Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors
A photocurable resin/carbon nanotube (CNT) nanocomposite was fabricated from aligned CNTs in an acrylic matrix. The conductivity of the nanocomposite increased rapidly and then stabilized when the CNT content was increased up to and beyond the percolation threshold. Various structures were created u...
Gespeichert in:
Veröffentlicht in: | Polymers 2023-12, Vol.15 (24), p.4706 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 4706 |
container_title | Polymers |
container_volume | 15 |
creator | Li, Jia-Wun Chen, Ho-Fu Huang, Peng-Han Kuo, Chung-Feng Jeffrey Cheng, Chih-Chia Chiu, Chih-Wei |
description | A photocurable resin/carbon nanotube (CNT) nanocomposite was fabricated from aligned CNTs in an acrylic matrix. The conductivity of the nanocomposite increased rapidly and then stabilized when the CNT content was increased up to and beyond the percolation threshold. Various structures were created using a digital light processing (DLP) 3D printer. Various polymeric dispersants (SMA-amide) were designed and synthesized to improve the CNT dispersion and prevent aggregation. The benzene rings and lone electron pairs on the dispersant interacted with aromatic groups on the CNTs, causing the former to wrap around the latter. This created steric hindrance, thereby stabilizing and dispersing the CNTs in the solvent. CNT/polymer nanocomposites were created by combining the dispersant, CNTs, and a photocurable resin. The CNT content of the nanocomposite and the 3D printing parameters were tuned to optimize the conductivity and printing quality. A touch-based human interface device (HID) that utilizes the intrinsic conductivity of the nanocomposite and reliably detects touch signals was fabricated, enabling the free design of sensors of various styles and shapes using a low-cost 3D printer. The production of sensors without complex circuitry was achieved, enabling novel innovations. |
doi_str_mv | 10.3390/polym15244706 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10747156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779284791</galeid><sourcerecordid>A779284791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-91ada23365a77cabe1238344428572bff12557b2df2373778ffec78b296279943</originalsourceid><addsrcrecordid>eNpdkd9rFDEQx4MottQ--ioBX3zZNj83mycpp22Fogfqc8jmJncpu8ma7Bb735vzamlNAhNmPvNNhi9Cbyk541yT8ykN9yOVTAhF2hfomBHFG8Fb8vLJ_QidlnJL6hKybal6jY54R7nWsjtGcb1Lc3JLtv0AeGVznyL-amOalx7O13t9yH8TLo1TKmEG7FPG8w4w_4TXOcQ5xC1OHl8O8DscVCbrwhzuoNahlCUD_g6xpFzeoFfeDgVOH-IJ-nn5-cfqurn5dvVldXHTOEHp3GhqN5Zx3kqrlLM9UMY7LoRgnVSs954yKVXPNp5xxZXqvAenup7plimtBT9BHw-609KPsHEQ52wHM-Uw2nxvkg3meSWGndmmO0OJEorKtip8eFDI6dcCZTZjKA6GwUZISzFMEylZSxir6Pv_0Nu05Fjn21OiHk67Sp0dqK0dwIToU33Y1b2BMbgUwYeav1BKs04oTWtDc2hwOZWSwT9-nxKzt988s7_y757O_Ej_M5v_AerDq_4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904904318</pqid></control><display><type>article</type><title>Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Jia-Wun ; Chen, Ho-Fu ; Huang, Peng-Han ; Kuo, Chung-Feng Jeffrey ; Cheng, Chih-Chia ; Chiu, Chih-Wei</creator><creatorcontrib>Li, Jia-Wun ; Chen, Ho-Fu ; Huang, Peng-Han ; Kuo, Chung-Feng Jeffrey ; Cheng, Chih-Chia ; Chiu, Chih-Wei</creatorcontrib><description>A photocurable resin/carbon nanotube (CNT) nanocomposite was fabricated from aligned CNTs in an acrylic matrix. The conductivity of the nanocomposite increased rapidly and then stabilized when the CNT content was increased up to and beyond the percolation threshold. Various structures were created using a digital light processing (DLP) 3D printer. Various polymeric dispersants (SMA-amide) were designed and synthesized to improve the CNT dispersion and prevent aggregation. The benzene rings and lone electron pairs on the dispersant interacted with aromatic groups on the CNTs, causing the former to wrap around the latter. This created steric hindrance, thereby stabilizing and dispersing the CNTs in the solvent. CNT/polymer nanocomposites were created by combining the dispersant, CNTs, and a photocurable resin. The CNT content of the nanocomposite and the 3D printing parameters were tuned to optimize the conductivity and printing quality. A touch-based human interface device (HID) that utilizes the intrinsic conductivity of the nanocomposite and reliably detects touch signals was fabricated, enabling the free design of sensors of various styles and shapes using a low-cost 3D printer. The production of sensors without complex circuitry was achieved, enabling novel innovations.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym15244706</identifier><identifier>PMID: 38139958</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3D printing ; Analysis ; Benzene ; Carbon nanotubes ; Circuits ; Composite materials ; Dispersants ; Dispersion ; Electric properties ; Electrons ; Mechanical properties ; Nanocomposites ; Nanoparticles ; Nanotubes ; Percolation ; Photocuring ; Polymers ; Pressure sensors ; Product development ; Resins ; Sensors ; Spectrum analysis ; Steric hindrance ; Three dimensional printing</subject><ispartof>Polymers, 2023-12, Vol.15 (24), p.4706</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c411t-91ada23365a77cabe1238344428572bff12557b2df2373778ffec78b296279943</cites><orcidid>0000-0003-2258-2454 ; 0000-0002-9025-8755 ; 0000-0002-1605-6338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747156/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747156/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38139958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jia-Wun</creatorcontrib><creatorcontrib>Chen, Ho-Fu</creatorcontrib><creatorcontrib>Huang, Peng-Han</creatorcontrib><creatorcontrib>Kuo, Chung-Feng Jeffrey</creatorcontrib><creatorcontrib>Cheng, Chih-Chia</creatorcontrib><creatorcontrib>Chiu, Chih-Wei</creatorcontrib><title>Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>A photocurable resin/carbon nanotube (CNT) nanocomposite was fabricated from aligned CNTs in an acrylic matrix. The conductivity of the nanocomposite increased rapidly and then stabilized when the CNT content was increased up to and beyond the percolation threshold. Various structures were created using a digital light processing (DLP) 3D printer. Various polymeric dispersants (SMA-amide) were designed and synthesized to improve the CNT dispersion and prevent aggregation. The benzene rings and lone electron pairs on the dispersant interacted with aromatic groups on the CNTs, causing the former to wrap around the latter. This created steric hindrance, thereby stabilizing and dispersing the CNTs in the solvent. CNT/polymer nanocomposites were created by combining the dispersant, CNTs, and a photocurable resin. The CNT content of the nanocomposite and the 3D printing parameters were tuned to optimize the conductivity and printing quality. A touch-based human interface device (HID) that utilizes the intrinsic conductivity of the nanocomposite and reliably detects touch signals was fabricated, enabling the free design of sensors of various styles and shapes using a low-cost 3D printer. The production of sensors without complex circuitry was achieved, enabling novel innovations.</description><subject>3D printing</subject><subject>Analysis</subject><subject>Benzene</subject><subject>Carbon nanotubes</subject><subject>Circuits</subject><subject>Composite materials</subject><subject>Dispersants</subject><subject>Dispersion</subject><subject>Electric properties</subject><subject>Electrons</subject><subject>Mechanical properties</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanotubes</subject><subject>Percolation</subject><subject>Photocuring</subject><subject>Polymers</subject><subject>Pressure sensors</subject><subject>Product development</subject><subject>Resins</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Steric hindrance</subject><subject>Three dimensional printing</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9rFDEQx4MottQ--ioBX3zZNj83mycpp22Fogfqc8jmJncpu8ma7Bb735vzamlNAhNmPvNNhi9Cbyk541yT8ykN9yOVTAhF2hfomBHFG8Fb8vLJ_QidlnJL6hKybal6jY54R7nWsjtGcb1Lc3JLtv0AeGVznyL-amOalx7O13t9yH8TLo1TKmEG7FPG8w4w_4TXOcQ5xC1OHl8O8DscVCbrwhzuoNahlCUD_g6xpFzeoFfeDgVOH-IJ-nn5-cfqurn5dvVldXHTOEHp3GhqN5Zx3kqrlLM9UMY7LoRgnVSs954yKVXPNp5xxZXqvAenup7plimtBT9BHw-609KPsHEQ52wHM-Uw2nxvkg3meSWGndmmO0OJEorKtip8eFDI6dcCZTZjKA6GwUZISzFMEylZSxir6Pv_0Nu05Fjn21OiHk67Sp0dqK0dwIToU33Y1b2BMbgUwYeav1BKs04oTWtDc2hwOZWSwT9-nxKzt988s7_y757O_Ej_M5v_AerDq_4</recordid><startdate>20231214</startdate><enddate>20231214</enddate><creator>Li, Jia-Wun</creator><creator>Chen, Ho-Fu</creator><creator>Huang, Peng-Han</creator><creator>Kuo, Chung-Feng Jeffrey</creator><creator>Cheng, Chih-Chia</creator><creator>Chiu, Chih-Wei</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2258-2454</orcidid><orcidid>https://orcid.org/0000-0002-9025-8755</orcidid><orcidid>https://orcid.org/0000-0002-1605-6338</orcidid></search><sort><creationdate>20231214</creationdate><title>Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors</title><author>Li, Jia-Wun ; Chen, Ho-Fu ; Huang, Peng-Han ; Kuo, Chung-Feng Jeffrey ; Cheng, Chih-Chia ; Chiu, Chih-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-91ada23365a77cabe1238344428572bff12557b2df2373778ffec78b296279943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Analysis</topic><topic>Benzene</topic><topic>Carbon nanotubes</topic><topic>Circuits</topic><topic>Composite materials</topic><topic>Dispersants</topic><topic>Dispersion</topic><topic>Electric properties</topic><topic>Electrons</topic><topic>Mechanical properties</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanotubes</topic><topic>Percolation</topic><topic>Photocuring</topic><topic>Polymers</topic><topic>Pressure sensors</topic><topic>Product development</topic><topic>Resins</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Steric hindrance</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jia-Wun</creatorcontrib><creatorcontrib>Chen, Ho-Fu</creatorcontrib><creatorcontrib>Huang, Peng-Han</creatorcontrib><creatorcontrib>Kuo, Chung-Feng Jeffrey</creatorcontrib><creatorcontrib>Cheng, Chih-Chia</creatorcontrib><creatorcontrib>Chiu, Chih-Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jia-Wun</au><au>Chen, Ho-Fu</au><au>Huang, Peng-Han</au><au>Kuo, Chung-Feng Jeffrey</au><au>Cheng, Chih-Chia</au><au>Chiu, Chih-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2023-12-14</date><risdate>2023</risdate><volume>15</volume><issue>24</issue><spage>4706</spage><pages>4706-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>A photocurable resin/carbon nanotube (CNT) nanocomposite was fabricated from aligned CNTs in an acrylic matrix. The conductivity of the nanocomposite increased rapidly and then stabilized when the CNT content was increased up to and beyond the percolation threshold. Various structures were created using a digital light processing (DLP) 3D printer. Various polymeric dispersants (SMA-amide) were designed and synthesized to improve the CNT dispersion and prevent aggregation. The benzene rings and lone electron pairs on the dispersant interacted with aromatic groups on the CNTs, causing the former to wrap around the latter. This created steric hindrance, thereby stabilizing and dispersing the CNTs in the solvent. CNT/polymer nanocomposites were created by combining the dispersant, CNTs, and a photocurable resin. The CNT content of the nanocomposite and the 3D printing parameters were tuned to optimize the conductivity and printing quality. A touch-based human interface device (HID) that utilizes the intrinsic conductivity of the nanocomposite and reliably detects touch signals was fabricated, enabling the free design of sensors of various styles and shapes using a low-cost 3D printer. The production of sensors without complex circuitry was achieved, enabling novel innovations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38139958</pmid><doi>10.3390/polym15244706</doi><orcidid>https://orcid.org/0000-0003-2258-2454</orcidid><orcidid>https://orcid.org/0000-0002-9025-8755</orcidid><orcidid>https://orcid.org/0000-0002-1605-6338</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2023-12, Vol.15 (24), p.4706 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10747156 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 3D printing Analysis Benzene Carbon nanotubes Circuits Composite materials Dispersants Dispersion Electric properties Electrons Mechanical properties Nanocomposites Nanoparticles Nanotubes Percolation Photocuring Polymers Pressure sensors Product development Resins Sensors Spectrum analysis Steric hindrance Three dimensional printing |
title | Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photocurable%20Carbon%20Nanotube/Polymer%20Nanocomposite%20for%20the%203D%20Printing%20of%20Flexible%20Capacitive%20Pressure%20Sensors&rft.jtitle=Polymers&rft.au=Li,%20Jia-Wun&rft.date=2023-12-14&rft.volume=15&rft.issue=24&rft.spage=4706&rft.pages=4706-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym15244706&rft_dat=%3Cgale_pubme%3EA779284791%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904904318&rft_id=info:pmid/38139958&rft_galeid=A779284791&rfr_iscdi=true |