Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors

A photocurable resin/carbon nanotube (CNT) nanocomposite was fabricated from aligned CNTs in an acrylic matrix. The conductivity of the nanocomposite increased rapidly and then stabilized when the CNT content was increased up to and beyond the percolation threshold. Various structures were created u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-12, Vol.15 (24), p.4706
Hauptverfasser: Li, Jia-Wun, Chen, Ho-Fu, Huang, Peng-Han, Kuo, Chung-Feng Jeffrey, Cheng, Chih-Chia, Chiu, Chih-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 4706
container_title Polymers
container_volume 15
creator Li, Jia-Wun
Chen, Ho-Fu
Huang, Peng-Han
Kuo, Chung-Feng Jeffrey
Cheng, Chih-Chia
Chiu, Chih-Wei
description A photocurable resin/carbon nanotube (CNT) nanocomposite was fabricated from aligned CNTs in an acrylic matrix. The conductivity of the nanocomposite increased rapidly and then stabilized when the CNT content was increased up to and beyond the percolation threshold. Various structures were created using a digital light processing (DLP) 3D printer. Various polymeric dispersants (SMA-amide) were designed and synthesized to improve the CNT dispersion and prevent aggregation. The benzene rings and lone electron pairs on the dispersant interacted with aromatic groups on the CNTs, causing the former to wrap around the latter. This created steric hindrance, thereby stabilizing and dispersing the CNTs in the solvent. CNT/polymer nanocomposites were created by combining the dispersant, CNTs, and a photocurable resin. The CNT content of the nanocomposite and the 3D printing parameters were tuned to optimize the conductivity and printing quality. A touch-based human interface device (HID) that utilizes the intrinsic conductivity of the nanocomposite and reliably detects touch signals was fabricated, enabling the free design of sensors of various styles and shapes using a low-cost 3D printer. The production of sensors without complex circuitry was achieved, enabling novel innovations.
doi_str_mv 10.3390/polym15244706
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10747156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779284791</galeid><sourcerecordid>A779284791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-91ada23365a77cabe1238344428572bff12557b2df2373778ffec78b296279943</originalsourceid><addsrcrecordid>eNpdkd9rFDEQx4MottQ--ioBX3zZNj83mycpp22Fogfqc8jmJncpu8ma7Bb735vzamlNAhNmPvNNhi9Cbyk541yT8ykN9yOVTAhF2hfomBHFG8Fb8vLJ_QidlnJL6hKybal6jY54R7nWsjtGcb1Lc3JLtv0AeGVznyL-amOalx7O13t9yH8TLo1TKmEG7FPG8w4w_4TXOcQ5xC1OHl8O8DscVCbrwhzuoNahlCUD_g6xpFzeoFfeDgVOH-IJ-nn5-cfqurn5dvVldXHTOEHp3GhqN5Zx3kqrlLM9UMY7LoRgnVSs954yKVXPNp5xxZXqvAenup7plimtBT9BHw-609KPsHEQ52wHM-Uw2nxvkg3meSWGndmmO0OJEorKtip8eFDI6dcCZTZjKA6GwUZISzFMEylZSxir6Pv_0Nu05Fjn21OiHk67Sp0dqK0dwIToU33Y1b2BMbgUwYeav1BKs04oTWtDc2hwOZWSwT9-nxKzt988s7_y757O_Ej_M5v_AerDq_4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904904318</pqid></control><display><type>article</type><title>Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Jia-Wun ; Chen, Ho-Fu ; Huang, Peng-Han ; Kuo, Chung-Feng Jeffrey ; Cheng, Chih-Chia ; Chiu, Chih-Wei</creator><creatorcontrib>Li, Jia-Wun ; Chen, Ho-Fu ; Huang, Peng-Han ; Kuo, Chung-Feng Jeffrey ; Cheng, Chih-Chia ; Chiu, Chih-Wei</creatorcontrib><description>A photocurable resin/carbon nanotube (CNT) nanocomposite was fabricated from aligned CNTs in an acrylic matrix. The conductivity of the nanocomposite increased rapidly and then stabilized when the CNT content was increased up to and beyond the percolation threshold. Various structures were created using a digital light processing (DLP) 3D printer. Various polymeric dispersants (SMA-amide) were designed and synthesized to improve the CNT dispersion and prevent aggregation. The benzene rings and lone electron pairs on the dispersant interacted with aromatic groups on the CNTs, causing the former to wrap around the latter. This created steric hindrance, thereby stabilizing and dispersing the CNTs in the solvent. CNT/polymer nanocomposites were created by combining the dispersant, CNTs, and a photocurable resin. The CNT content of the nanocomposite and the 3D printing parameters were tuned to optimize the conductivity and printing quality. A touch-based human interface device (HID) that utilizes the intrinsic conductivity of the nanocomposite and reliably detects touch signals was fabricated, enabling the free design of sensors of various styles and shapes using a low-cost 3D printer. The production of sensors without complex circuitry was achieved, enabling novel innovations.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym15244706</identifier><identifier>PMID: 38139958</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3D printing ; Analysis ; Benzene ; Carbon nanotubes ; Circuits ; Composite materials ; Dispersants ; Dispersion ; Electric properties ; Electrons ; Mechanical properties ; Nanocomposites ; Nanoparticles ; Nanotubes ; Percolation ; Photocuring ; Polymers ; Pressure sensors ; Product development ; Resins ; Sensors ; Spectrum analysis ; Steric hindrance ; Three dimensional printing</subject><ispartof>Polymers, 2023-12, Vol.15 (24), p.4706</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c411t-91ada23365a77cabe1238344428572bff12557b2df2373778ffec78b296279943</cites><orcidid>0000-0003-2258-2454 ; 0000-0002-9025-8755 ; 0000-0002-1605-6338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747156/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747156/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38139958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jia-Wun</creatorcontrib><creatorcontrib>Chen, Ho-Fu</creatorcontrib><creatorcontrib>Huang, Peng-Han</creatorcontrib><creatorcontrib>Kuo, Chung-Feng Jeffrey</creatorcontrib><creatorcontrib>Cheng, Chih-Chia</creatorcontrib><creatorcontrib>Chiu, Chih-Wei</creatorcontrib><title>Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>A photocurable resin/carbon nanotube (CNT) nanocomposite was fabricated from aligned CNTs in an acrylic matrix. The conductivity of the nanocomposite increased rapidly and then stabilized when the CNT content was increased up to and beyond the percolation threshold. Various structures were created using a digital light processing (DLP) 3D printer. Various polymeric dispersants (SMA-amide) were designed and synthesized to improve the CNT dispersion and prevent aggregation. The benzene rings and lone electron pairs on the dispersant interacted with aromatic groups on the CNTs, causing the former to wrap around the latter. This created steric hindrance, thereby stabilizing and dispersing the CNTs in the solvent. CNT/polymer nanocomposites were created by combining the dispersant, CNTs, and a photocurable resin. The CNT content of the nanocomposite and the 3D printing parameters were tuned to optimize the conductivity and printing quality. A touch-based human interface device (HID) that utilizes the intrinsic conductivity of the nanocomposite and reliably detects touch signals was fabricated, enabling the free design of sensors of various styles and shapes using a low-cost 3D printer. The production of sensors without complex circuitry was achieved, enabling novel innovations.</description><subject>3D printing</subject><subject>Analysis</subject><subject>Benzene</subject><subject>Carbon nanotubes</subject><subject>Circuits</subject><subject>Composite materials</subject><subject>Dispersants</subject><subject>Dispersion</subject><subject>Electric properties</subject><subject>Electrons</subject><subject>Mechanical properties</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanotubes</subject><subject>Percolation</subject><subject>Photocuring</subject><subject>Polymers</subject><subject>Pressure sensors</subject><subject>Product development</subject><subject>Resins</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Steric hindrance</subject><subject>Three dimensional printing</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9rFDEQx4MottQ--ioBX3zZNj83mycpp22Fogfqc8jmJncpu8ma7Bb735vzamlNAhNmPvNNhi9Cbyk541yT8ykN9yOVTAhF2hfomBHFG8Fb8vLJ_QidlnJL6hKybal6jY54R7nWsjtGcb1Lc3JLtv0AeGVznyL-amOalx7O13t9yH8TLo1TKmEG7FPG8w4w_4TXOcQ5xC1OHl8O8DscVCbrwhzuoNahlCUD_g6xpFzeoFfeDgVOH-IJ-nn5-cfqurn5dvVldXHTOEHp3GhqN5Zx3kqrlLM9UMY7LoRgnVSs954yKVXPNp5xxZXqvAenup7plimtBT9BHw-609KPsHEQ52wHM-Uw2nxvkg3meSWGndmmO0OJEorKtip8eFDI6dcCZTZjKA6GwUZISzFMEylZSxir6Pv_0Nu05Fjn21OiHk67Sp0dqK0dwIToU33Y1b2BMbgUwYeav1BKs04oTWtDc2hwOZWSwT9-nxKzt988s7_y757O_Ej_M5v_AerDq_4</recordid><startdate>20231214</startdate><enddate>20231214</enddate><creator>Li, Jia-Wun</creator><creator>Chen, Ho-Fu</creator><creator>Huang, Peng-Han</creator><creator>Kuo, Chung-Feng Jeffrey</creator><creator>Cheng, Chih-Chia</creator><creator>Chiu, Chih-Wei</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2258-2454</orcidid><orcidid>https://orcid.org/0000-0002-9025-8755</orcidid><orcidid>https://orcid.org/0000-0002-1605-6338</orcidid></search><sort><creationdate>20231214</creationdate><title>Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors</title><author>Li, Jia-Wun ; Chen, Ho-Fu ; Huang, Peng-Han ; Kuo, Chung-Feng Jeffrey ; Cheng, Chih-Chia ; Chiu, Chih-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-91ada23365a77cabe1238344428572bff12557b2df2373778ffec78b296279943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Analysis</topic><topic>Benzene</topic><topic>Carbon nanotubes</topic><topic>Circuits</topic><topic>Composite materials</topic><topic>Dispersants</topic><topic>Dispersion</topic><topic>Electric properties</topic><topic>Electrons</topic><topic>Mechanical properties</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanotubes</topic><topic>Percolation</topic><topic>Photocuring</topic><topic>Polymers</topic><topic>Pressure sensors</topic><topic>Product development</topic><topic>Resins</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Steric hindrance</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jia-Wun</creatorcontrib><creatorcontrib>Chen, Ho-Fu</creatorcontrib><creatorcontrib>Huang, Peng-Han</creatorcontrib><creatorcontrib>Kuo, Chung-Feng Jeffrey</creatorcontrib><creatorcontrib>Cheng, Chih-Chia</creatorcontrib><creatorcontrib>Chiu, Chih-Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jia-Wun</au><au>Chen, Ho-Fu</au><au>Huang, Peng-Han</au><au>Kuo, Chung-Feng Jeffrey</au><au>Cheng, Chih-Chia</au><au>Chiu, Chih-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2023-12-14</date><risdate>2023</risdate><volume>15</volume><issue>24</issue><spage>4706</spage><pages>4706-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>A photocurable resin/carbon nanotube (CNT) nanocomposite was fabricated from aligned CNTs in an acrylic matrix. The conductivity of the nanocomposite increased rapidly and then stabilized when the CNT content was increased up to and beyond the percolation threshold. Various structures were created using a digital light processing (DLP) 3D printer. Various polymeric dispersants (SMA-amide) were designed and synthesized to improve the CNT dispersion and prevent aggregation. The benzene rings and lone electron pairs on the dispersant interacted with aromatic groups on the CNTs, causing the former to wrap around the latter. This created steric hindrance, thereby stabilizing and dispersing the CNTs in the solvent. CNT/polymer nanocomposites were created by combining the dispersant, CNTs, and a photocurable resin. The CNT content of the nanocomposite and the 3D printing parameters were tuned to optimize the conductivity and printing quality. A touch-based human interface device (HID) that utilizes the intrinsic conductivity of the nanocomposite and reliably detects touch signals was fabricated, enabling the free design of sensors of various styles and shapes using a low-cost 3D printer. The production of sensors without complex circuitry was achieved, enabling novel innovations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38139958</pmid><doi>10.3390/polym15244706</doi><orcidid>https://orcid.org/0000-0003-2258-2454</orcidid><orcidid>https://orcid.org/0000-0002-9025-8755</orcidid><orcidid>https://orcid.org/0000-0002-1605-6338</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2023-12, Vol.15 (24), p.4706
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10747156
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 3D printing
Analysis
Benzene
Carbon nanotubes
Circuits
Composite materials
Dispersants
Dispersion
Electric properties
Electrons
Mechanical properties
Nanocomposites
Nanoparticles
Nanotubes
Percolation
Photocuring
Polymers
Pressure sensors
Product development
Resins
Sensors
Spectrum analysis
Steric hindrance
Three dimensional printing
title Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photocurable%20Carbon%20Nanotube/Polymer%20Nanocomposite%20for%20the%203D%20Printing%20of%20Flexible%20Capacitive%20Pressure%20Sensors&rft.jtitle=Polymers&rft.au=Li,%20Jia-Wun&rft.date=2023-12-14&rft.volume=15&rft.issue=24&rft.spage=4706&rft.pages=4706-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym15244706&rft_dat=%3Cgale_pubme%3EA779284791%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904904318&rft_id=info:pmid/38139958&rft_galeid=A779284791&rfr_iscdi=true