Design principles for cyclin K molecular glue degraders
Molecular glue degraders are an effective therapeutic modality, but their design principles are not well understood. Recently, several unexpectedly diverse compounds were reported to deplete cyclin K by linking CDK12–cyclin K to the DDB1–CUL4–RBX1 E3 ligase. Here, to investigate how chemically dissi...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2024-01, Vol.20 (1), p.93-102 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102 |
---|---|
container_issue | 1 |
container_start_page | 93 |
container_title | Nature chemical biology |
container_volume | 20 |
creator | Kozicka, Zuzanna Suchyta, Dakota J. Focht, Vivian Kempf, Georg Petzold, Georg Jentzsch, Marius Zou, Charles Di Genua, Cristina Donovan, Katherine A. Coomar, Seemon Cigler, Marko Mayor-Ruiz, Cristina Schmid-Burgk, Jonathan L. Häussinger, Daniel Winter, Georg E. Fischer, Eric S. Słabicki, Mikołaj Gillingham, Dennis Ebert, Benjamin L. Thomä, Nicolas H. |
description | Molecular glue degraders are an effective therapeutic modality, but their design principles are not well understood. Recently, several unexpectedly diverse compounds were reported to deplete cyclin K by linking CDK12–cyclin K to the DDB1–CUL4–RBX1 E3 ligase. Here, to investigate how chemically dissimilar small molecules trigger cyclin K degradation, we evaluated 91 candidate degraders in structural, biophysical and cellular studies and reveal all compounds acquire glue activity via simultaneous CDK12 binding and engagement of DDB1 interfacial residues, in particular Arg928. While we identify multiple published kinase inhibitors as cryptic degraders, we also show that these glues do not require pronounced inhibitory properties for activity and that the relative degree of CDK12 inhibition versus cyclin K degradation is tuneable. We further demonstrate cyclin K degraders have transcriptional signatures distinct from CDK12 inhibitors, thereby offering unique therapeutic opportunities. The systematic structure–activity relationship analysis presented herein provides a conceptual framework for rational molecular glue design.
Detailed analysis of the structure–activity relationship for cyclin K degraders reveals diverse compounds that acquire glue activity through simultaneous binding to the CDK12 kinase pocket and engagement of several key DDB1 interfacial residues. |
doi_str_mv | 10.1038/s41589-023-01409-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10746543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904824629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-4f5b8e42388cab790363a5065b7d48bd819dda5c0b59884df82b3eb4b8c45c043</originalsourceid><addsrcrecordid>eNp9kctOxCAUhonR6Dj6Ai5MEzduqlwOLayM8R4ncaNrApTWTph2hKmJPr3o6HhZuILAd_5zTj6E9gg-IpiJ4wiEC5ljynJMAMv8dQ2NCOc0Byjk-urO8RbajnGKMSsKIjbRFiuLUgKXI1Seu9g2XTYPbWfbuXcxq_uQ2Rfr2y67zWa9d3bwOmSNH1xWuSboyoW4gzZq7aPb_TzH6OHy4v7sOp_cXd2cnU5yCyVf5FBzIxxQJoTVppRpAqY5LrgpKxCmEkRWleYWGy6FgKoW1DBnwAgL6RXYGJ0sc-eDmbnKum4RtFdp3JkOL6rXrfr907WPqumfFcElFBxYSjj8TAj90-DiQs3aaJ33unP9EBUVBWMYA-cJPfiDTvshdGk_RSUGQaGgMlF0SdnQxxhcvZqGYPUuRi3FqCRGfYhRr6lo_-ceq5IvEwlgSyC-q2hc-O79T-wbgEuZXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904824629</pqid></control><display><type>article</type><title>Design principles for cyclin K molecular glue degraders</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Kozicka, Zuzanna ; Suchyta, Dakota J. ; Focht, Vivian ; Kempf, Georg ; Petzold, Georg ; Jentzsch, Marius ; Zou, Charles ; Di Genua, Cristina ; Donovan, Katherine A. ; Coomar, Seemon ; Cigler, Marko ; Mayor-Ruiz, Cristina ; Schmid-Burgk, Jonathan L. ; Häussinger, Daniel ; Winter, Georg E. ; Fischer, Eric S. ; Słabicki, Mikołaj ; Gillingham, Dennis ; Ebert, Benjamin L. ; Thomä, Nicolas H.</creator><creatorcontrib>Kozicka, Zuzanna ; Suchyta, Dakota J. ; Focht, Vivian ; Kempf, Georg ; Petzold, Georg ; Jentzsch, Marius ; Zou, Charles ; Di Genua, Cristina ; Donovan, Katherine A. ; Coomar, Seemon ; Cigler, Marko ; Mayor-Ruiz, Cristina ; Schmid-Burgk, Jonathan L. ; Häussinger, Daniel ; Winter, Georg E. ; Fischer, Eric S. ; Słabicki, Mikołaj ; Gillingham, Dennis ; Ebert, Benjamin L. ; Thomä, Nicolas H.</creatorcontrib><description>Molecular glue degraders are an effective therapeutic modality, but their design principles are not well understood. Recently, several unexpectedly diverse compounds were reported to deplete cyclin K by linking CDK12–cyclin K to the DDB1–CUL4–RBX1 E3 ligase. Here, to investigate how chemically dissimilar small molecules trigger cyclin K degradation, we evaluated 91 candidate degraders in structural, biophysical and cellular studies and reveal all compounds acquire glue activity via simultaneous CDK12 binding and engagement of DDB1 interfacial residues, in particular Arg928. While we identify multiple published kinase inhibitors as cryptic degraders, we also show that these glues do not require pronounced inhibitory properties for activity and that the relative degree of CDK12 inhibition versus cyclin K degradation is tuneable. We further demonstrate cyclin K degraders have transcriptional signatures distinct from CDK12 inhibitors, thereby offering unique therapeutic opportunities. The systematic structure–activity relationship analysis presented herein provides a conceptual framework for rational molecular glue design.
Detailed analysis of the structure–activity relationship for cyclin K degraders reveals diverse compounds that acquire glue activity through simultaneous binding to the CDK12 kinase pocket and engagement of several key DDB1 interfacial residues.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-023-01409-z</identifier><identifier>PMID: 37679459</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/154/309/2420 ; 631/535/1266 ; 631/67/1059 ; 631/92/613 ; Binding ; Biochemical Engineering ; Biochemistry ; Biology ; Bioorganic Chemistry ; Cancer ; Cell Biology ; Cellular structure ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Crystal structure ; Cyclin-dependent kinases ; Cyclins - metabolism ; Degradation ; Design ; Glues ; Hydrogen bonds ; Interfaces ; Kinases ; Oncology ; Principles ; Proteins ; Proteolysis ; Residues ; Structure-Activity Relationship ; Ubiquitin-protein ligase ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>Nature chemical biology, 2024-01, Vol.20 (1), p.93-102</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-4f5b8e42388cab790363a5065b7d48bd819dda5c0b59884df82b3eb4b8c45c043</citedby><cites>FETCH-LOGICAL-c475t-4f5b8e42388cab790363a5065b7d48bd819dda5c0b59884df82b3eb4b8c45c043</cites><orcidid>0000-0003-0988-2487 ; 0000-0001-6317-9296 ; 0000-0002-8539-5106 ; 0000-0001-7337-6306 ; 0000-0003-0197-5451 ; 0000-0003-2685-906X ; 0000-0002-3672-8699 ; 0000-0003-1861-7968 ; 0000-0002-4798-0072 ; 0000-0003-0085-6565 ; 0000-0001-6606-1437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-023-01409-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-023-01409-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37679459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kozicka, Zuzanna</creatorcontrib><creatorcontrib>Suchyta, Dakota J.</creatorcontrib><creatorcontrib>Focht, Vivian</creatorcontrib><creatorcontrib>Kempf, Georg</creatorcontrib><creatorcontrib>Petzold, Georg</creatorcontrib><creatorcontrib>Jentzsch, Marius</creatorcontrib><creatorcontrib>Zou, Charles</creatorcontrib><creatorcontrib>Di Genua, Cristina</creatorcontrib><creatorcontrib>Donovan, Katherine A.</creatorcontrib><creatorcontrib>Coomar, Seemon</creatorcontrib><creatorcontrib>Cigler, Marko</creatorcontrib><creatorcontrib>Mayor-Ruiz, Cristina</creatorcontrib><creatorcontrib>Schmid-Burgk, Jonathan L.</creatorcontrib><creatorcontrib>Häussinger, Daniel</creatorcontrib><creatorcontrib>Winter, Georg E.</creatorcontrib><creatorcontrib>Fischer, Eric S.</creatorcontrib><creatorcontrib>Słabicki, Mikołaj</creatorcontrib><creatorcontrib>Gillingham, Dennis</creatorcontrib><creatorcontrib>Ebert, Benjamin L.</creatorcontrib><creatorcontrib>Thomä, Nicolas H.</creatorcontrib><title>Design principles for cyclin K molecular glue degraders</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Molecular glue degraders are an effective therapeutic modality, but their design principles are not well understood. Recently, several unexpectedly diverse compounds were reported to deplete cyclin K by linking CDK12–cyclin K to the DDB1–CUL4–RBX1 E3 ligase. Here, to investigate how chemically dissimilar small molecules trigger cyclin K degradation, we evaluated 91 candidate degraders in structural, biophysical and cellular studies and reveal all compounds acquire glue activity via simultaneous CDK12 binding and engagement of DDB1 interfacial residues, in particular Arg928. While we identify multiple published kinase inhibitors as cryptic degraders, we also show that these glues do not require pronounced inhibitory properties for activity and that the relative degree of CDK12 inhibition versus cyclin K degradation is tuneable. We further demonstrate cyclin K degraders have transcriptional signatures distinct from CDK12 inhibitors, thereby offering unique therapeutic opportunities. The systematic structure–activity relationship analysis presented herein provides a conceptual framework for rational molecular glue design.
Detailed analysis of the structure–activity relationship for cyclin K degraders reveals diverse compounds that acquire glue activity through simultaneous binding to the CDK12 kinase pocket and engagement of several key DDB1 interfacial residues.</description><subject>631/154/309/2420</subject><subject>631/535/1266</subject><subject>631/67/1059</subject><subject>631/92/613</subject><subject>Binding</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Bioorganic Chemistry</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cellular structure</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Crystal structure</subject><subject>Cyclin-dependent kinases</subject><subject>Cyclins - metabolism</subject><subject>Degradation</subject><subject>Design</subject><subject>Glues</subject><subject>Hydrogen bonds</subject><subject>Interfaces</subject><subject>Kinases</subject><subject>Oncology</subject><subject>Principles</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Residues</subject><subject>Structure-Activity Relationship</subject><subject>Ubiquitin-protein ligase</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctOxCAUhonR6Dj6Ai5MEzduqlwOLayM8R4ncaNrApTWTph2hKmJPr3o6HhZuILAd_5zTj6E9gg-IpiJ4wiEC5ljynJMAMv8dQ2NCOc0Byjk-urO8RbajnGKMSsKIjbRFiuLUgKXI1Seu9g2XTYPbWfbuXcxq_uQ2Rfr2y67zWa9d3bwOmSNH1xWuSboyoW4gzZq7aPb_TzH6OHy4v7sOp_cXd2cnU5yCyVf5FBzIxxQJoTVppRpAqY5LrgpKxCmEkRWleYWGy6FgKoW1DBnwAgL6RXYGJ0sc-eDmbnKum4RtFdp3JkOL6rXrfr907WPqumfFcElFBxYSjj8TAj90-DiQs3aaJ33unP9EBUVBWMYA-cJPfiDTvshdGk_RSUGQaGgMlF0SdnQxxhcvZqGYPUuRi3FqCRGfYhRr6lo_-ceq5IvEwlgSyC-q2hc-O79T-wbgEuZXg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kozicka, Zuzanna</creator><creator>Suchyta, Dakota J.</creator><creator>Focht, Vivian</creator><creator>Kempf, Georg</creator><creator>Petzold, Georg</creator><creator>Jentzsch, Marius</creator><creator>Zou, Charles</creator><creator>Di Genua, Cristina</creator><creator>Donovan, Katherine A.</creator><creator>Coomar, Seemon</creator><creator>Cigler, Marko</creator><creator>Mayor-Ruiz, Cristina</creator><creator>Schmid-Burgk, Jonathan L.</creator><creator>Häussinger, Daniel</creator><creator>Winter, Georg E.</creator><creator>Fischer, Eric S.</creator><creator>Słabicki, Mikołaj</creator><creator>Gillingham, Dennis</creator><creator>Ebert, Benjamin L.</creator><creator>Thomä, Nicolas H.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0988-2487</orcidid><orcidid>https://orcid.org/0000-0001-6317-9296</orcidid><orcidid>https://orcid.org/0000-0002-8539-5106</orcidid><orcidid>https://orcid.org/0000-0001-7337-6306</orcidid><orcidid>https://orcid.org/0000-0003-0197-5451</orcidid><orcidid>https://orcid.org/0000-0003-2685-906X</orcidid><orcidid>https://orcid.org/0000-0002-3672-8699</orcidid><orcidid>https://orcid.org/0000-0003-1861-7968</orcidid><orcidid>https://orcid.org/0000-0002-4798-0072</orcidid><orcidid>https://orcid.org/0000-0003-0085-6565</orcidid><orcidid>https://orcid.org/0000-0001-6606-1437</orcidid></search><sort><creationdate>20240101</creationdate><title>Design principles for cyclin K molecular glue degraders</title><author>Kozicka, Zuzanna ; Suchyta, Dakota J. ; Focht, Vivian ; Kempf, Georg ; Petzold, Georg ; Jentzsch, Marius ; Zou, Charles ; Di Genua, Cristina ; Donovan, Katherine A. ; Coomar, Seemon ; Cigler, Marko ; Mayor-Ruiz, Cristina ; Schmid-Burgk, Jonathan L. ; Häussinger, Daniel ; Winter, Georg E. ; Fischer, Eric S. ; Słabicki, Mikołaj ; Gillingham, Dennis ; Ebert, Benjamin L. ; Thomä, Nicolas H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-4f5b8e42388cab790363a5065b7d48bd819dda5c0b59884df82b3eb4b8c45c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/154/309/2420</topic><topic>631/535/1266</topic><topic>631/67/1059</topic><topic>631/92/613</topic><topic>Binding</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Bioorganic Chemistry</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cellular structure</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Crystal structure</topic><topic>Cyclin-dependent kinases</topic><topic>Cyclins - metabolism</topic><topic>Degradation</topic><topic>Design</topic><topic>Glues</topic><topic>Hydrogen bonds</topic><topic>Interfaces</topic><topic>Kinases</topic><topic>Oncology</topic><topic>Principles</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Residues</topic><topic>Structure-Activity Relationship</topic><topic>Ubiquitin-protein ligase</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozicka, Zuzanna</creatorcontrib><creatorcontrib>Suchyta, Dakota J.</creatorcontrib><creatorcontrib>Focht, Vivian</creatorcontrib><creatorcontrib>Kempf, Georg</creatorcontrib><creatorcontrib>Petzold, Georg</creatorcontrib><creatorcontrib>Jentzsch, Marius</creatorcontrib><creatorcontrib>Zou, Charles</creatorcontrib><creatorcontrib>Di Genua, Cristina</creatorcontrib><creatorcontrib>Donovan, Katherine A.</creatorcontrib><creatorcontrib>Coomar, Seemon</creatorcontrib><creatorcontrib>Cigler, Marko</creatorcontrib><creatorcontrib>Mayor-Ruiz, Cristina</creatorcontrib><creatorcontrib>Schmid-Burgk, Jonathan L.</creatorcontrib><creatorcontrib>Häussinger, Daniel</creatorcontrib><creatorcontrib>Winter, Georg E.</creatorcontrib><creatorcontrib>Fischer, Eric S.</creatorcontrib><creatorcontrib>Słabicki, Mikołaj</creatorcontrib><creatorcontrib>Gillingham, Dennis</creatorcontrib><creatorcontrib>Ebert, Benjamin L.</creatorcontrib><creatorcontrib>Thomä, Nicolas H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozicka, Zuzanna</au><au>Suchyta, Dakota J.</au><au>Focht, Vivian</au><au>Kempf, Georg</au><au>Petzold, Georg</au><au>Jentzsch, Marius</au><au>Zou, Charles</au><au>Di Genua, Cristina</au><au>Donovan, Katherine A.</au><au>Coomar, Seemon</au><au>Cigler, Marko</au><au>Mayor-Ruiz, Cristina</au><au>Schmid-Burgk, Jonathan L.</au><au>Häussinger, Daniel</au><au>Winter, Georg E.</au><au>Fischer, Eric S.</au><au>Słabicki, Mikołaj</au><au>Gillingham, Dennis</au><au>Ebert, Benjamin L.</au><au>Thomä, Nicolas H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design principles for cyclin K molecular glue degraders</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>20</volume><issue>1</issue><spage>93</spage><epage>102</epage><pages>93-102</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Molecular glue degraders are an effective therapeutic modality, but their design principles are not well understood. Recently, several unexpectedly diverse compounds were reported to deplete cyclin K by linking CDK12–cyclin K to the DDB1–CUL4–RBX1 E3 ligase. Here, to investigate how chemically dissimilar small molecules trigger cyclin K degradation, we evaluated 91 candidate degraders in structural, biophysical and cellular studies and reveal all compounds acquire glue activity via simultaneous CDK12 binding and engagement of DDB1 interfacial residues, in particular Arg928. While we identify multiple published kinase inhibitors as cryptic degraders, we also show that these glues do not require pronounced inhibitory properties for activity and that the relative degree of CDK12 inhibition versus cyclin K degradation is tuneable. We further demonstrate cyclin K degraders have transcriptional signatures distinct from CDK12 inhibitors, thereby offering unique therapeutic opportunities. The systematic structure–activity relationship analysis presented herein provides a conceptual framework for rational molecular glue design.
Detailed analysis of the structure–activity relationship for cyclin K degraders reveals diverse compounds that acquire glue activity through simultaneous binding to the CDK12 kinase pocket and engagement of several key DDB1 interfacial residues.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37679459</pmid><doi>10.1038/s41589-023-01409-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0988-2487</orcidid><orcidid>https://orcid.org/0000-0001-6317-9296</orcidid><orcidid>https://orcid.org/0000-0002-8539-5106</orcidid><orcidid>https://orcid.org/0000-0001-7337-6306</orcidid><orcidid>https://orcid.org/0000-0003-0197-5451</orcidid><orcidid>https://orcid.org/0000-0003-2685-906X</orcidid><orcidid>https://orcid.org/0000-0002-3672-8699</orcidid><orcidid>https://orcid.org/0000-0003-1861-7968</orcidid><orcidid>https://orcid.org/0000-0002-4798-0072</orcidid><orcidid>https://orcid.org/0000-0003-0085-6565</orcidid><orcidid>https://orcid.org/0000-0001-6606-1437</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2024-01, Vol.20 (1), p.93-102 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10746543 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/154/309/2420 631/535/1266 631/67/1059 631/92/613 Binding Biochemical Engineering Biochemistry Biology Bioorganic Chemistry Cancer Cell Biology Cellular structure Chemistry Chemistry and Materials Science Chemistry/Food Science Crystal structure Cyclin-dependent kinases Cyclins - metabolism Degradation Design Glues Hydrogen bonds Interfaces Kinases Oncology Principles Proteins Proteolysis Residues Structure-Activity Relationship Ubiquitin-protein ligase Ubiquitin-Protein Ligases - metabolism |
title | Design principles for cyclin K molecular glue degraders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20principles%20for%20cyclin%20K%20molecular%20glue%20degraders&rft.jtitle=Nature%20chemical%20biology&rft.au=Kozicka,%20Zuzanna&rft.date=2024-01-01&rft.volume=20&rft.issue=1&rft.spage=93&rft.epage=102&rft.pages=93-102&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-023-01409-z&rft_dat=%3Cproquest_pubme%3E2904824629%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904824629&rft_id=info:pmid/37679459&rfr_iscdi=true |