Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design
Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2023-12, Vol.120 (51), p.1 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 51 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Chi, Li-Ping Niu, Zhuang-Zhuang Zhang, Yu-Cai Zhang, Xiao-Long Liao, Jie Wu, Zhi-Zheng Yu, Peng-Cheng Fan, Ming-Hui Tang, Kai-Bin Gao, Min-Rui |
description | Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ–generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm−2 at pH 2. When operated in a slim continuous-flow electrolyzer, the system exhibits a full-cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %. |
doi_str_mv | 10.1073/pnas.2312876120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10742388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904984902</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-489477abb0edf33d6792c9b0bf456d33e4700a885a34985343a03a91878ff603</originalsourceid><addsrcrecordid>eNpdkL1PwzAUxC0EoqUws1piYUl5sZ3YnhCqyodUqUs3hshx7OIqiYudVOp_jyu6wPSG-93p3SF0n8M8B06f9r2Kc0JzIniZE7hA0xxknpVMwiWaAhCeCUbYBN3EuAMAWQi4RhMqQBRc0Cn6XFrrtDP9gFXf4DioujVYadc4jRdrgk1r9BB8e4wu4sFj60OXpBOB6yNWOJhowsG7kMxh1MMYDG5MdNv-Fl1Z1UZzd74ztHldbhbv2Wr99rF4WWV7wsmQMSEZ56quwTSW0qbkkmhZQ21ZUTaUGsYBlBCFokyKgjKqgCqZCy6sLYHO0PNv7H6sO9Po1CWottoH16lwrLxy1V-ld1_V1h-qtCAjVIiU8HhOCP57NHGoOhe1aVvVGz_GikggsuBlQRP68A_d-TH0qd6JSv-l5Qn9ARSRe04</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904984902</pqid></control><display><type>article</type><title>Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chi, Li-Ping ; Niu, Zhuang-Zhuang ; Zhang, Yu-Cai ; Zhang, Xiao-Long ; Liao, Jie ; Wu, Zhi-Zheng ; Yu, Peng-Cheng ; Fan, Ming-Hui ; Tang, Kai-Bin ; Gao, Min-Rui</creator><creatorcontrib>Chi, Li-Ping ; Niu, Zhuang-Zhuang ; Zhang, Yu-Cai ; Zhang, Xiao-Long ; Liao, Jie ; Wu, Zhi-Zheng ; Yu, Peng-Cheng ; Fan, Ming-Hui ; Tang, Kai-Bin ; Gao, Min-Rui</creatorcontrib><description>Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ–generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm−2 at pH 2. When operated in a slim continuous-flow electrolyzer, the system exhibits a full-cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2312876120</identifier><identifier>PMID: 38085783</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Acids ; Aqueous solutions ; Bismuth ; Carbon dioxide ; Chemical synthesis ; Continuous flow ; Diffusion layers ; Efficiency ; Electrochemistry ; Electrolysis ; Electrolytes ; Energy efficiency ; Formic acid ; Hydrogen evolution reactions ; Physical Sciences ; Reservoirs</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-12, Vol.120 (51), p.1</ispartof><rights>Copyright National Academy of Sciences Dec 19, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742388/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742388/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Chi, Li-Ping</creatorcontrib><creatorcontrib>Niu, Zhuang-Zhuang</creatorcontrib><creatorcontrib>Zhang, Yu-Cai</creatorcontrib><creatorcontrib>Zhang, Xiao-Long</creatorcontrib><creatorcontrib>Liao, Jie</creatorcontrib><creatorcontrib>Wu, Zhi-Zheng</creatorcontrib><creatorcontrib>Yu, Peng-Cheng</creatorcontrib><creatorcontrib>Fan, Ming-Hui</creatorcontrib><creatorcontrib>Tang, Kai-Bin</creatorcontrib><creatorcontrib>Gao, Min-Rui</creatorcontrib><title>Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ–generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm−2 at pH 2. When operated in a slim continuous-flow electrolyzer, the system exhibits a full-cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %.</description><subject>Acids</subject><subject>Aqueous solutions</subject><subject>Bismuth</subject><subject>Carbon dioxide</subject><subject>Chemical synthesis</subject><subject>Continuous flow</subject><subject>Diffusion layers</subject><subject>Efficiency</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Energy efficiency</subject><subject>Formic acid</subject><subject>Hydrogen evolution reactions</subject><subject>Physical Sciences</subject><subject>Reservoirs</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkL1PwzAUxC0EoqUws1piYUl5sZ3YnhCqyodUqUs3hshx7OIqiYudVOp_jyu6wPSG-93p3SF0n8M8B06f9r2Kc0JzIniZE7hA0xxknpVMwiWaAhCeCUbYBN3EuAMAWQi4RhMqQBRc0Cn6XFrrtDP9gFXf4DioujVYadc4jRdrgk1r9BB8e4wu4sFj60OXpBOB6yNWOJhowsG7kMxh1MMYDG5MdNv-Fl1Z1UZzd74ztHldbhbv2Wr99rF4WWV7wsmQMSEZ56quwTSW0qbkkmhZQ21ZUTaUGsYBlBCFokyKgjKqgCqZCy6sLYHO0PNv7H6sO9Po1CWottoH16lwrLxy1V-ld1_V1h-qtCAjVIiU8HhOCP57NHGoOhe1aVvVGz_GikggsuBlQRP68A_d-TH0qd6JSv-l5Qn9ARSRe04</recordid><startdate>20231219</startdate><enddate>20231219</enddate><creator>Chi, Li-Ping</creator><creator>Niu, Zhuang-Zhuang</creator><creator>Zhang, Yu-Cai</creator><creator>Zhang, Xiao-Long</creator><creator>Liao, Jie</creator><creator>Wu, Zhi-Zheng</creator><creator>Yu, Peng-Cheng</creator><creator>Fan, Ming-Hui</creator><creator>Tang, Kai-Bin</creator><creator>Gao, Min-Rui</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231219</creationdate><title>Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design</title><author>Chi, Li-Ping ; Niu, Zhuang-Zhuang ; Zhang, Yu-Cai ; Zhang, Xiao-Long ; Liao, Jie ; Wu, Zhi-Zheng ; Yu, Peng-Cheng ; Fan, Ming-Hui ; Tang, Kai-Bin ; Gao, Min-Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-489477abb0edf33d6792c9b0bf456d33e4700a885a34985343a03a91878ff603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Aqueous solutions</topic><topic>Bismuth</topic><topic>Carbon dioxide</topic><topic>Chemical synthesis</topic><topic>Continuous flow</topic><topic>Diffusion layers</topic><topic>Efficiency</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Energy efficiency</topic><topic>Formic acid</topic><topic>Hydrogen evolution reactions</topic><topic>Physical Sciences</topic><topic>Reservoirs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Li-Ping</creatorcontrib><creatorcontrib>Niu, Zhuang-Zhuang</creatorcontrib><creatorcontrib>Zhang, Yu-Cai</creatorcontrib><creatorcontrib>Zhang, Xiao-Long</creatorcontrib><creatorcontrib>Liao, Jie</creatorcontrib><creatorcontrib>Wu, Zhi-Zheng</creatorcontrib><creatorcontrib>Yu, Peng-Cheng</creatorcontrib><creatorcontrib>Fan, Ming-Hui</creatorcontrib><creatorcontrib>Tang, Kai-Bin</creatorcontrib><creatorcontrib>Gao, Min-Rui</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Li-Ping</au><au>Niu, Zhuang-Zhuang</au><au>Zhang, Yu-Cai</au><au>Zhang, Xiao-Long</au><au>Liao, Jie</au><au>Wu, Zhi-Zheng</au><au>Yu, Peng-Cheng</au><au>Fan, Ming-Hui</au><au>Tang, Kai-Bin</au><au>Gao, Min-Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2023-12-19</date><risdate>2023</risdate><volume>120</volume><issue>51</issue><spage>1</spage><pages>1-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ–generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm−2 at pH 2. When operated in a slim continuous-flow electrolyzer, the system exhibits a full-cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>38085783</pmid><doi>10.1073/pnas.2312876120</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-12, Vol.120 (51), p.1 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10742388 |
source | PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acids Aqueous solutions Bismuth Carbon dioxide Chemical synthesis Continuous flow Diffusion layers Efficiency Electrochemistry Electrolysis Electrolytes Energy efficiency Formic acid Hydrogen evolution reactions Physical Sciences Reservoirs |
title | Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20stable%20acidic%20CO2%20electrolysis%20to%20formic%20acid%20by%20a%20reservoir%20structure%20design&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chi,%20Li-Ping&rft.date=2023-12-19&rft.volume=120&rft.issue=51&rft.spage=1&rft.pages=1-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2312876120&rft_dat=%3Cproquest_pubme%3E2904984902%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904984902&rft_id=info:pmid/38085783&rfr_iscdi=true |