Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design

Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-12, Vol.120 (51), p.1
Hauptverfasser: Chi, Li-Ping, Niu, Zhuang-Zhuang, Zhang, Yu-Cai, Zhang, Xiao-Long, Liao, Jie, Wu, Zhi-Zheng, Yu, Peng-Cheng, Fan, Ming-Hui, Tang, Kai-Bin, Gao, Min-Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 51
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Chi, Li-Ping
Niu, Zhuang-Zhuang
Zhang, Yu-Cai
Zhang, Xiao-Long
Liao, Jie
Wu, Zhi-Zheng
Yu, Peng-Cheng
Fan, Ming-Hui
Tang, Kai-Bin
Gao, Min-Rui
description Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ–generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm−2 at pH 2. When operated in a slim continuous-flow electrolyzer, the system exhibits a full-cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %.
doi_str_mv 10.1073/pnas.2312876120
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10742388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904984902</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-489477abb0edf33d6792c9b0bf456d33e4700a885a34985343a03a91878ff603</originalsourceid><addsrcrecordid>eNpdkL1PwzAUxC0EoqUws1piYUl5sZ3YnhCqyodUqUs3hshx7OIqiYudVOp_jyu6wPSG-93p3SF0n8M8B06f9r2Kc0JzIniZE7hA0xxknpVMwiWaAhCeCUbYBN3EuAMAWQi4RhMqQBRc0Cn6XFrrtDP9gFXf4DioujVYadc4jRdrgk1r9BB8e4wu4sFj60OXpBOB6yNWOJhowsG7kMxh1MMYDG5MdNv-Fl1Z1UZzd74ztHldbhbv2Wr99rF4WWV7wsmQMSEZ56quwTSW0qbkkmhZQ21ZUTaUGsYBlBCFokyKgjKqgCqZCy6sLYHO0PNv7H6sO9Po1CWottoH16lwrLxy1V-ld1_V1h-qtCAjVIiU8HhOCP57NHGoOhe1aVvVGz_GikggsuBlQRP68A_d-TH0qd6JSv-l5Qn9ARSRe04</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904984902</pqid></control><display><type>article</type><title>Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chi, Li-Ping ; Niu, Zhuang-Zhuang ; Zhang, Yu-Cai ; Zhang, Xiao-Long ; Liao, Jie ; Wu, Zhi-Zheng ; Yu, Peng-Cheng ; Fan, Ming-Hui ; Tang, Kai-Bin ; Gao, Min-Rui</creator><creatorcontrib>Chi, Li-Ping ; Niu, Zhuang-Zhuang ; Zhang, Yu-Cai ; Zhang, Xiao-Long ; Liao, Jie ; Wu, Zhi-Zheng ; Yu, Peng-Cheng ; Fan, Ming-Hui ; Tang, Kai-Bin ; Gao, Min-Rui</creatorcontrib><description>Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ–generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm−2 at pH 2. When operated in a slim continuous-flow electrolyzer, the system exhibits a full-cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2312876120</identifier><identifier>PMID: 38085783</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Acids ; Aqueous solutions ; Bismuth ; Carbon dioxide ; Chemical synthesis ; Continuous flow ; Diffusion layers ; Efficiency ; Electrochemistry ; Electrolysis ; Electrolytes ; Energy efficiency ; Formic acid ; Hydrogen evolution reactions ; Physical Sciences ; Reservoirs</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-12, Vol.120 (51), p.1</ispartof><rights>Copyright National Academy of Sciences Dec 19, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742388/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742388/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Chi, Li-Ping</creatorcontrib><creatorcontrib>Niu, Zhuang-Zhuang</creatorcontrib><creatorcontrib>Zhang, Yu-Cai</creatorcontrib><creatorcontrib>Zhang, Xiao-Long</creatorcontrib><creatorcontrib>Liao, Jie</creatorcontrib><creatorcontrib>Wu, Zhi-Zheng</creatorcontrib><creatorcontrib>Yu, Peng-Cheng</creatorcontrib><creatorcontrib>Fan, Ming-Hui</creatorcontrib><creatorcontrib>Tang, Kai-Bin</creatorcontrib><creatorcontrib>Gao, Min-Rui</creatorcontrib><title>Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ–generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm−2 at pH 2. When operated in a slim continuous-flow electrolyzer, the system exhibits a full-cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %.</description><subject>Acids</subject><subject>Aqueous solutions</subject><subject>Bismuth</subject><subject>Carbon dioxide</subject><subject>Chemical synthesis</subject><subject>Continuous flow</subject><subject>Diffusion layers</subject><subject>Efficiency</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Energy efficiency</subject><subject>Formic acid</subject><subject>Hydrogen evolution reactions</subject><subject>Physical Sciences</subject><subject>Reservoirs</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkL1PwzAUxC0EoqUws1piYUl5sZ3YnhCqyodUqUs3hshx7OIqiYudVOp_jyu6wPSG-93p3SF0n8M8B06f9r2Kc0JzIniZE7hA0xxknpVMwiWaAhCeCUbYBN3EuAMAWQi4RhMqQBRc0Cn6XFrrtDP9gFXf4DioujVYadc4jRdrgk1r9BB8e4wu4sFj60OXpBOB6yNWOJhowsG7kMxh1MMYDG5MdNv-Fl1Z1UZzd74ztHldbhbv2Wr99rF4WWV7wsmQMSEZ56quwTSW0qbkkmhZQ21ZUTaUGsYBlBCFokyKgjKqgCqZCy6sLYHO0PNv7H6sO9Po1CWottoH16lwrLxy1V-ld1_V1h-qtCAjVIiU8HhOCP57NHGoOhe1aVvVGz_GikggsuBlQRP68A_d-TH0qd6JSv-l5Qn9ARSRe04</recordid><startdate>20231219</startdate><enddate>20231219</enddate><creator>Chi, Li-Ping</creator><creator>Niu, Zhuang-Zhuang</creator><creator>Zhang, Yu-Cai</creator><creator>Zhang, Xiao-Long</creator><creator>Liao, Jie</creator><creator>Wu, Zhi-Zheng</creator><creator>Yu, Peng-Cheng</creator><creator>Fan, Ming-Hui</creator><creator>Tang, Kai-Bin</creator><creator>Gao, Min-Rui</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231219</creationdate><title>Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design</title><author>Chi, Li-Ping ; Niu, Zhuang-Zhuang ; Zhang, Yu-Cai ; Zhang, Xiao-Long ; Liao, Jie ; Wu, Zhi-Zheng ; Yu, Peng-Cheng ; Fan, Ming-Hui ; Tang, Kai-Bin ; Gao, Min-Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-489477abb0edf33d6792c9b0bf456d33e4700a885a34985343a03a91878ff603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Aqueous solutions</topic><topic>Bismuth</topic><topic>Carbon dioxide</topic><topic>Chemical synthesis</topic><topic>Continuous flow</topic><topic>Diffusion layers</topic><topic>Efficiency</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Energy efficiency</topic><topic>Formic acid</topic><topic>Hydrogen evolution reactions</topic><topic>Physical Sciences</topic><topic>Reservoirs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Li-Ping</creatorcontrib><creatorcontrib>Niu, Zhuang-Zhuang</creatorcontrib><creatorcontrib>Zhang, Yu-Cai</creatorcontrib><creatorcontrib>Zhang, Xiao-Long</creatorcontrib><creatorcontrib>Liao, Jie</creatorcontrib><creatorcontrib>Wu, Zhi-Zheng</creatorcontrib><creatorcontrib>Yu, Peng-Cheng</creatorcontrib><creatorcontrib>Fan, Ming-Hui</creatorcontrib><creatorcontrib>Tang, Kai-Bin</creatorcontrib><creatorcontrib>Gao, Min-Rui</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Li-Ping</au><au>Niu, Zhuang-Zhuang</au><au>Zhang, Yu-Cai</au><au>Zhang, Xiao-Long</au><au>Liao, Jie</au><au>Wu, Zhi-Zheng</au><au>Yu, Peng-Cheng</au><au>Fan, Ming-Hui</au><au>Tang, Kai-Bin</au><au>Gao, Min-Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2023-12-19</date><risdate>2023</risdate><volume>120</volume><issue>51</issue><spage>1</spage><pages>1-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ–generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm−2 at pH 2. When operated in a slim continuous-flow electrolyzer, the system exhibits a full-cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>38085783</pmid><doi>10.1073/pnas.2312876120</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-12, Vol.120 (51), p.1
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10742388
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acids
Aqueous solutions
Bismuth
Carbon dioxide
Chemical synthesis
Continuous flow
Diffusion layers
Efficiency
Electrochemistry
Electrolysis
Electrolytes
Energy efficiency
Formic acid
Hydrogen evolution reactions
Physical Sciences
Reservoirs
title Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20stable%20acidic%20CO2%20electrolysis%20to%20formic%20acid%20by%20a%20reservoir%20structure%20design&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chi,%20Li-Ping&rft.date=2023-12-19&rft.volume=120&rft.issue=51&rft.spage=1&rft.pages=1-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2312876120&rft_dat=%3Cproquest_pubme%3E2904984902%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904984902&rft_id=info:pmid/38085783&rfr_iscdi=true