Single-shot optical imaging with spectrum circuit bridging timescales in high-speed photography

Single-shot optical imaging based on ultrashort lasers has revealed nonrepetitive processes in subnanosecond timescales beyond the recording range of conventional high-speed cameras. However, nanosecond photography without sacrificing short exposure time and image quality is still missing because of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2023-12, Vol.9 (51), p.eadj8608-eadj8608
Hauptverfasser: Saiki, Takao, Shimada, Keitaro, Ishijima, Ayumu, Song, Hang, Qi, Xinyi, Okamoto, Yuki, Mizushima, Ayako, Mita, Yoshio, Hosobata, Takuya, Takeda, Masahiro, Morita, Shinya, Kushibiki, Kosuke, Ozaki, Shinobu, Motohara, Kentaro, Yamagata, Yutaka, Tsukamoto, Akira, Kannari, Fumihiko, Sakuma, Ichiro, Inada, Yuki, Nakagawa, Keiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eadj8608
container_issue 51
container_start_page eadj8608
container_title Science advances
container_volume 9
creator Saiki, Takao
Shimada, Keitaro
Ishijima, Ayumu
Song, Hang
Qi, Xinyi
Okamoto, Yuki
Mizushima, Ayako
Mita, Yoshio
Hosobata, Takuya
Takeda, Masahiro
Morita, Shinya
Kushibiki, Kosuke
Ozaki, Shinobu
Motohara, Kentaro
Yamagata, Yutaka
Tsukamoto, Akira
Kannari, Fumihiko
Sakuma, Ichiro
Inada, Yuki
Nakagawa, Keiichi
description Single-shot optical imaging based on ultrashort lasers has revealed nonrepetitive processes in subnanosecond timescales beyond the recording range of conventional high-speed cameras. However, nanosecond photography without sacrificing short exposure time and image quality is still missing because of the gap in recordable timescales between ultrafast optical imaging and high-speed electronic cameras. Here, we demonstrate nanosecond photography and ultrawide time-range high-speed photography using a spectrum circuit that produces interval-tunable pulse trains while keeping short pulse durations. We capture a shock wave propagating through a biological cell with a 1.5-ns frame interval and 44-ps exposure time while suppressing image blur. Furthermore, we observe femtosecond laser processing over multiple timescales (25-ps, 2.0-ns, and 1-ms frame intervals), showing that the plasma generated at the picosecond timescale affects subsequent shock wave formation at the nanosecond timescale. Our technique contributes to accumulating data of various fast processes for analysis and to analyzing multi-timescale phenomena as a series of physical processes.
doi_str_mv 10.1126/sciadv.adj8608
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10732534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904573355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-30d568cb0cebbcf6178a1998eda563563546ca44e7b71ab0a14f09d15a38d4253</originalsourceid><addsrcrecordid>eNpVUU1LxDAQDaLosnr1KDl66Zo0SZueRBa_QPCgnkOapG2kXybpyv57s-66rDAww8yb92Z4AFxitMA4zW68slKvFlJ_8gzxIzBLSc6SlFF-fFCfgQvvPxFCmGYZw8UpOCMc45xzPAPizfZ1axLfDAEOY7BKttB2so5t-G1DA_1oVHBTB5V1arIBls7q33GwnfERbzy0PWxs3SQRbDQcI9lQOzk263NwUsnWm4tdnoOPh_v35VPy8vr4vLx7SRQpcEgI0izjqkTKlKWqsnidxEXBjZYsI5ugmZKUmrzMsSyRxLRChcZMEq5pysgc3G55x6nsjFamD062YnTxF7cWg7Ti_6S3jaiHlcAoJ3GfRobrHYMbvibjg-isV6ZtZW-GyYu0QJTlhLCN2GILVW7w3plqr4OR2Dgjts6InTNx4erwuj38zwfyA3gNjoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904573355</pqid></control><display><type>article</type><title>Single-shot optical imaging with spectrum circuit bridging timescales in high-speed photography</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Saiki, Takao ; Shimada, Keitaro ; Ishijima, Ayumu ; Song, Hang ; Qi, Xinyi ; Okamoto, Yuki ; Mizushima, Ayako ; Mita, Yoshio ; Hosobata, Takuya ; Takeda, Masahiro ; Morita, Shinya ; Kushibiki, Kosuke ; Ozaki, Shinobu ; Motohara, Kentaro ; Yamagata, Yutaka ; Tsukamoto, Akira ; Kannari, Fumihiko ; Sakuma, Ichiro ; Inada, Yuki ; Nakagawa, Keiichi</creator><creatorcontrib>Saiki, Takao ; Shimada, Keitaro ; Ishijima, Ayumu ; Song, Hang ; Qi, Xinyi ; Okamoto, Yuki ; Mizushima, Ayako ; Mita, Yoshio ; Hosobata, Takuya ; Takeda, Masahiro ; Morita, Shinya ; Kushibiki, Kosuke ; Ozaki, Shinobu ; Motohara, Kentaro ; Yamagata, Yutaka ; Tsukamoto, Akira ; Kannari, Fumihiko ; Sakuma, Ichiro ; Inada, Yuki ; Nakagawa, Keiichi</creatorcontrib><description>Single-shot optical imaging based on ultrashort lasers has revealed nonrepetitive processes in subnanosecond timescales beyond the recording range of conventional high-speed cameras. However, nanosecond photography without sacrificing short exposure time and image quality is still missing because of the gap in recordable timescales between ultrafast optical imaging and high-speed electronic cameras. Here, we demonstrate nanosecond photography and ultrawide time-range high-speed photography using a spectrum circuit that produces interval-tunable pulse trains while keeping short pulse durations. We capture a shock wave propagating through a biological cell with a 1.5-ns frame interval and 44-ps exposure time while suppressing image blur. Furthermore, we observe femtosecond laser processing over multiple timescales (25-ps, 2.0-ns, and 1-ms frame intervals), showing that the plasma generated at the picosecond timescale affects subsequent shock wave formation at the nanosecond timescale. Our technique contributes to accumulating data of various fast processes for analysis and to analyzing multi-timescale phenomena as a series of physical processes.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adj8608</identifier><identifier>PMID: 38117881</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Applied Physics ; Optics ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2023-12, Vol.9 (51), p.eadj8608-eadj8608</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-30d568cb0cebbcf6178a1998eda563563546ca44e7b71ab0a14f09d15a38d4253</citedby><cites>FETCH-LOGICAL-c391t-30d568cb0cebbcf6178a1998eda563563546ca44e7b71ab0a14f09d15a38d4253</cites><orcidid>0000-0002-9681-7909 ; 0000-0002-5443-0300 ; 0000-0002-3174-3232 ; 0009-0002-2643-6964 ; 0009-0003-0243-3889 ; 0000-0003-3775-6920 ; 0000-0001-5598-5888 ; 0000-0002-3763-4088 ; 0000-0002-8499-5740 ; 0009-0000-5163-2305 ; 0000-0001-5210-0503 ; 0000-0003-3655-1245 ; 0009-0009-4660-9915 ; 0000-0002-4919-9466 ; 0000-0001-6013-0462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732534/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732534/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38117881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saiki, Takao</creatorcontrib><creatorcontrib>Shimada, Keitaro</creatorcontrib><creatorcontrib>Ishijima, Ayumu</creatorcontrib><creatorcontrib>Song, Hang</creatorcontrib><creatorcontrib>Qi, Xinyi</creatorcontrib><creatorcontrib>Okamoto, Yuki</creatorcontrib><creatorcontrib>Mizushima, Ayako</creatorcontrib><creatorcontrib>Mita, Yoshio</creatorcontrib><creatorcontrib>Hosobata, Takuya</creatorcontrib><creatorcontrib>Takeda, Masahiro</creatorcontrib><creatorcontrib>Morita, Shinya</creatorcontrib><creatorcontrib>Kushibiki, Kosuke</creatorcontrib><creatorcontrib>Ozaki, Shinobu</creatorcontrib><creatorcontrib>Motohara, Kentaro</creatorcontrib><creatorcontrib>Yamagata, Yutaka</creatorcontrib><creatorcontrib>Tsukamoto, Akira</creatorcontrib><creatorcontrib>Kannari, Fumihiko</creatorcontrib><creatorcontrib>Sakuma, Ichiro</creatorcontrib><creatorcontrib>Inada, Yuki</creatorcontrib><creatorcontrib>Nakagawa, Keiichi</creatorcontrib><title>Single-shot optical imaging with spectrum circuit bridging timescales in high-speed photography</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Single-shot optical imaging based on ultrashort lasers has revealed nonrepetitive processes in subnanosecond timescales beyond the recording range of conventional high-speed cameras. However, nanosecond photography without sacrificing short exposure time and image quality is still missing because of the gap in recordable timescales between ultrafast optical imaging and high-speed electronic cameras. Here, we demonstrate nanosecond photography and ultrawide time-range high-speed photography using a spectrum circuit that produces interval-tunable pulse trains while keeping short pulse durations. We capture a shock wave propagating through a biological cell with a 1.5-ns frame interval and 44-ps exposure time while suppressing image blur. Furthermore, we observe femtosecond laser processing over multiple timescales (25-ps, 2.0-ns, and 1-ms frame intervals), showing that the plasma generated at the picosecond timescale affects subsequent shock wave formation at the nanosecond timescale. Our technique contributes to accumulating data of various fast processes for analysis and to analyzing multi-timescale phenomena as a series of physical processes.</description><subject>Applied Physics</subject><subject>Optics</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LxDAQDaLosnr1KDl66Zo0SZueRBa_QPCgnkOapG2kXybpyv57s-66rDAww8yb92Z4AFxitMA4zW68slKvFlJ_8gzxIzBLSc6SlFF-fFCfgQvvPxFCmGYZw8UpOCMc45xzPAPizfZ1axLfDAEOY7BKttB2so5t-G1DA_1oVHBTB5V1arIBls7q33GwnfERbzy0PWxs3SQRbDQcI9lQOzk263NwUsnWm4tdnoOPh_v35VPy8vr4vLx7SRQpcEgI0izjqkTKlKWqsnidxEXBjZYsI5ugmZKUmrzMsSyRxLRChcZMEq5pysgc3G55x6nsjFamD062YnTxF7cWg7Ti_6S3jaiHlcAoJ3GfRobrHYMbvibjg-isV6ZtZW-GyYu0QJTlhLCN2GILVW7w3plqr4OR2Dgjts6InTNx4erwuj38zwfyA3gNjoA</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>Saiki, Takao</creator><creator>Shimada, Keitaro</creator><creator>Ishijima, Ayumu</creator><creator>Song, Hang</creator><creator>Qi, Xinyi</creator><creator>Okamoto, Yuki</creator><creator>Mizushima, Ayako</creator><creator>Mita, Yoshio</creator><creator>Hosobata, Takuya</creator><creator>Takeda, Masahiro</creator><creator>Morita, Shinya</creator><creator>Kushibiki, Kosuke</creator><creator>Ozaki, Shinobu</creator><creator>Motohara, Kentaro</creator><creator>Yamagata, Yutaka</creator><creator>Tsukamoto, Akira</creator><creator>Kannari, Fumihiko</creator><creator>Sakuma, Ichiro</creator><creator>Inada, Yuki</creator><creator>Nakagawa, Keiichi</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9681-7909</orcidid><orcidid>https://orcid.org/0000-0002-5443-0300</orcidid><orcidid>https://orcid.org/0000-0002-3174-3232</orcidid><orcidid>https://orcid.org/0009-0002-2643-6964</orcidid><orcidid>https://orcid.org/0009-0003-0243-3889</orcidid><orcidid>https://orcid.org/0000-0003-3775-6920</orcidid><orcidid>https://orcid.org/0000-0001-5598-5888</orcidid><orcidid>https://orcid.org/0000-0002-3763-4088</orcidid><orcidid>https://orcid.org/0000-0002-8499-5740</orcidid><orcidid>https://orcid.org/0009-0000-5163-2305</orcidid><orcidid>https://orcid.org/0000-0001-5210-0503</orcidid><orcidid>https://orcid.org/0000-0003-3655-1245</orcidid><orcidid>https://orcid.org/0009-0009-4660-9915</orcidid><orcidid>https://orcid.org/0000-0002-4919-9466</orcidid><orcidid>https://orcid.org/0000-0001-6013-0462</orcidid></search><sort><creationdate>20231222</creationdate><title>Single-shot optical imaging with spectrum circuit bridging timescales in high-speed photography</title><author>Saiki, Takao ; Shimada, Keitaro ; Ishijima, Ayumu ; Song, Hang ; Qi, Xinyi ; Okamoto, Yuki ; Mizushima, Ayako ; Mita, Yoshio ; Hosobata, Takuya ; Takeda, Masahiro ; Morita, Shinya ; Kushibiki, Kosuke ; Ozaki, Shinobu ; Motohara, Kentaro ; Yamagata, Yutaka ; Tsukamoto, Akira ; Kannari, Fumihiko ; Sakuma, Ichiro ; Inada, Yuki ; Nakagawa, Keiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-30d568cb0cebbcf6178a1998eda563563546ca44e7b71ab0a14f09d15a38d4253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied Physics</topic><topic>Optics</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saiki, Takao</creatorcontrib><creatorcontrib>Shimada, Keitaro</creatorcontrib><creatorcontrib>Ishijima, Ayumu</creatorcontrib><creatorcontrib>Song, Hang</creatorcontrib><creatorcontrib>Qi, Xinyi</creatorcontrib><creatorcontrib>Okamoto, Yuki</creatorcontrib><creatorcontrib>Mizushima, Ayako</creatorcontrib><creatorcontrib>Mita, Yoshio</creatorcontrib><creatorcontrib>Hosobata, Takuya</creatorcontrib><creatorcontrib>Takeda, Masahiro</creatorcontrib><creatorcontrib>Morita, Shinya</creatorcontrib><creatorcontrib>Kushibiki, Kosuke</creatorcontrib><creatorcontrib>Ozaki, Shinobu</creatorcontrib><creatorcontrib>Motohara, Kentaro</creatorcontrib><creatorcontrib>Yamagata, Yutaka</creatorcontrib><creatorcontrib>Tsukamoto, Akira</creatorcontrib><creatorcontrib>Kannari, Fumihiko</creatorcontrib><creatorcontrib>Sakuma, Ichiro</creatorcontrib><creatorcontrib>Inada, Yuki</creatorcontrib><creatorcontrib>Nakagawa, Keiichi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saiki, Takao</au><au>Shimada, Keitaro</au><au>Ishijima, Ayumu</au><au>Song, Hang</au><au>Qi, Xinyi</au><au>Okamoto, Yuki</au><au>Mizushima, Ayako</au><au>Mita, Yoshio</au><au>Hosobata, Takuya</au><au>Takeda, Masahiro</au><au>Morita, Shinya</au><au>Kushibiki, Kosuke</au><au>Ozaki, Shinobu</au><au>Motohara, Kentaro</au><au>Yamagata, Yutaka</au><au>Tsukamoto, Akira</au><au>Kannari, Fumihiko</au><au>Sakuma, Ichiro</au><au>Inada, Yuki</au><au>Nakagawa, Keiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-shot optical imaging with spectrum circuit bridging timescales in high-speed photography</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2023-12-22</date><risdate>2023</risdate><volume>9</volume><issue>51</issue><spage>eadj8608</spage><epage>eadj8608</epage><pages>eadj8608-eadj8608</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Single-shot optical imaging based on ultrashort lasers has revealed nonrepetitive processes in subnanosecond timescales beyond the recording range of conventional high-speed cameras. However, nanosecond photography without sacrificing short exposure time and image quality is still missing because of the gap in recordable timescales between ultrafast optical imaging and high-speed electronic cameras. Here, we demonstrate nanosecond photography and ultrawide time-range high-speed photography using a spectrum circuit that produces interval-tunable pulse trains while keeping short pulse durations. We capture a shock wave propagating through a biological cell with a 1.5-ns frame interval and 44-ps exposure time while suppressing image blur. Furthermore, we observe femtosecond laser processing over multiple timescales (25-ps, 2.0-ns, and 1-ms frame intervals), showing that the plasma generated at the picosecond timescale affects subsequent shock wave formation at the nanosecond timescale. Our technique contributes to accumulating data of various fast processes for analysis and to analyzing multi-timescale phenomena as a series of physical processes.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>38117881</pmid><doi>10.1126/sciadv.adj8608</doi><orcidid>https://orcid.org/0000-0002-9681-7909</orcidid><orcidid>https://orcid.org/0000-0002-5443-0300</orcidid><orcidid>https://orcid.org/0000-0002-3174-3232</orcidid><orcidid>https://orcid.org/0009-0002-2643-6964</orcidid><orcidid>https://orcid.org/0009-0003-0243-3889</orcidid><orcidid>https://orcid.org/0000-0003-3775-6920</orcidid><orcidid>https://orcid.org/0000-0001-5598-5888</orcidid><orcidid>https://orcid.org/0000-0002-3763-4088</orcidid><orcidid>https://orcid.org/0000-0002-8499-5740</orcidid><orcidid>https://orcid.org/0009-0000-5163-2305</orcidid><orcidid>https://orcid.org/0000-0001-5210-0503</orcidid><orcidid>https://orcid.org/0000-0003-3655-1245</orcidid><orcidid>https://orcid.org/0009-0009-4660-9915</orcidid><orcidid>https://orcid.org/0000-0002-4919-9466</orcidid><orcidid>https://orcid.org/0000-0001-6013-0462</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2023-12, Vol.9 (51), p.eadj8608-eadj8608
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10732534
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Applied Physics
Optics
Physical and Materials Sciences
SciAdv r-articles
title Single-shot optical imaging with spectrum circuit bridging timescales in high-speed photography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-shot%20optical%20imaging%20with%20spectrum%20circuit%20bridging%20timescales%20in%20high-speed%20photography&rft.jtitle=Science%20advances&rft.au=Saiki,%20Takao&rft.date=2023-12-22&rft.volume=9&rft.issue=51&rft.spage=eadj8608&rft.epage=eadj8608&rft.pages=eadj8608-eadj8608&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adj8608&rft_dat=%3Cproquest_pubme%3E2904573355%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904573355&rft_id=info:pmid/38117881&rfr_iscdi=true