An injectable and adaptable hydrogen sulfide delivery system for modulating neuroregenerative microenvironment

Peripheral nerve regeneration is a complex physiological process. Single-function nerve scaffolds often struggle to quickly adapt to the imbalanced regenerative microenvironment, leading to slow nerve regeneration and limited functional recovery. In this study, we demonstrate a "pleiotropic gas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2023-12, Vol.9 (51), p.eadi1078-eadi1078
Hauptverfasser: Dong, Xianzhen, Zhang, Hao, Duan, Ping, Liu, Kun, Yu, Yifeng, Wei, Wenying, Wang, Weixing, Liu, Yuhang, Cheng, Qiang, Liang, Xinyue, Huo, Yuanfang, Yan, Lesan, Yu, Aixi, Dai, Honglian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eadi1078
container_issue 51
container_start_page eadi1078
container_title Science advances
container_volume 9
creator Dong, Xianzhen
Zhang, Hao
Duan, Ping
Liu, Kun
Yu, Yifeng
Wei, Wenying
Wang, Weixing
Liu, Yuhang
Cheng, Qiang
Liang, Xinyue
Huo, Yuanfang
Yan, Lesan
Yu, Aixi
Dai, Honglian
description Peripheral nerve regeneration is a complex physiological process. Single-function nerve scaffolds often struggle to quickly adapt to the imbalanced regenerative microenvironment, leading to slow nerve regeneration and limited functional recovery. In this study, we demonstrate a "pleiotropic gas transmitter" strategy based on endogenous reactive oxygen species (ROS), which trigger the on-demand H S release at the defect area for transected peripheral nerve injury (PNI) repair through concurrent neuroregeneration and neuroprotection processing. This H S delivery system consists of an H S donor (peroxyTCM) encapsulated in a ROS-responsive polymer (mPEG-PMet) and loaded into a temperature-sensitive poly (amino acid) hydrogel (mPEG-PA-PP). This multi-effect combination strategy greatly promotes the regeneration of PNI, attributed to the physiological effects of H S. These effects include the inhibition of inflammation and oxidative stress, protection of nerve cells, promotion of angiogenesis, and the restoration of normal mitochondrial function. The adaptive release of pleiotropic messengers to modulate the tissue regeneration microenvironment offers promising peripheral nerve repair and tissue engineering opportunities.
doi_str_mv 10.1126/sciadv.adi1078
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10732521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904573263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-e35921bad4bebb4b101073be8f2a61c63f54a7712e83f39c3317e69a36676e913</originalsourceid><addsrcrecordid>eNpVUT1rwzAQFaWlCWnWjkVjl6Q-yZbtqYTQLwh0aWchW-dEwZZSyTbk39chaUin-3r33h2PkHuI5gBMPIXSKN3PlTYQpdkVGTOeJjOWxNn1RT4i0xC2URRBLEQC-S0Z8QwgzXIYE7uw1Ngtlq0qaqTKaqq02h2rzV57t0ZLQ1dXRiPVWJse_Z6GfWixoZXztHG6q1Vr7Jpa7LzzOGygHzo90saU3qHtjXe2QdvekZtK1QGnpzgh368vX8v32erz7WO5WM1KnkM7Q57kDAql4wKLIi4gGh7kBWYVUwJKwaskVmkKDDNe8bzkHFIUueJCpAJz4BPyfOTddUWDuhykvarlzptG-b10ysj_E2s2cu16edBhCTswPJ4YvPvpMLSyMaHEulYWXRcky6M4GbCCD9D5ETr8GoLH6qwDkTwYJY9GyZNRw8LD5XVn-J8t_BfEr5SM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904573263</pqid></control><display><type>article</type><title>An injectable and adaptable hydrogen sulfide delivery system for modulating neuroregenerative microenvironment</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Dong, Xianzhen ; Zhang, Hao ; Duan, Ping ; Liu, Kun ; Yu, Yifeng ; Wei, Wenying ; Wang, Weixing ; Liu, Yuhang ; Cheng, Qiang ; Liang, Xinyue ; Huo, Yuanfang ; Yan, Lesan ; Yu, Aixi ; Dai, Honglian</creator><creatorcontrib>Dong, Xianzhen ; Zhang, Hao ; Duan, Ping ; Liu, Kun ; Yu, Yifeng ; Wei, Wenying ; Wang, Weixing ; Liu, Yuhang ; Cheng, Qiang ; Liang, Xinyue ; Huo, Yuanfang ; Yan, Lesan ; Yu, Aixi ; Dai, Honglian</creatorcontrib><description>Peripheral nerve regeneration is a complex physiological process. Single-function nerve scaffolds often struggle to quickly adapt to the imbalanced regenerative microenvironment, leading to slow nerve regeneration and limited functional recovery. In this study, we demonstrate a "pleiotropic gas transmitter" strategy based on endogenous reactive oxygen species (ROS), which trigger the on-demand H S release at the defect area for transected peripheral nerve injury (PNI) repair through concurrent neuroregeneration and neuroprotection processing. This H S delivery system consists of an H S donor (peroxyTCM) encapsulated in a ROS-responsive polymer (mPEG-PMet) and loaded into a temperature-sensitive poly (amino acid) hydrogel (mPEG-PA-PP). This multi-effect combination strategy greatly promotes the regeneration of PNI, attributed to the physiological effects of H S. These effects include the inhibition of inflammation and oxidative stress, protection of nerve cells, promotion of angiogenesis, and the restoration of normal mitochondrial function. The adaptive release of pleiotropic messengers to modulate the tissue regeneration microenvironment offers promising peripheral nerve repair and tissue engineering opportunities.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adi1078</identifier><identifier>PMID: 38117891</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biomedicine and Life Sciences ; Humans ; Hydrogen Sulfide - pharmacology ; Nerve Regeneration ; Neuroscience ; Peripheral Nerve Injuries - drug therapy ; Polyethylene Glycols ; Reactive Oxygen Species ; SciAdv r-articles</subject><ispartof>Science advances, 2023-12, Vol.9 (51), p.eadi1078-eadi1078</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-e35921bad4bebb4b101073be8f2a61c63f54a7712e83f39c3317e69a36676e913</citedby><cites>FETCH-LOGICAL-c391t-e35921bad4bebb4b101073be8f2a61c63f54a7712e83f39c3317e69a36676e913</cites><orcidid>0000-0003-3616-9628 ; 0000-0002-6434-2865 ; 0000-0002-1272-0895 ; 0000-0003-3842-6843 ; 0000-0003-2472-1534 ; 0000-0001-7833-9651 ; 0000-0002-5723-6140 ; 0000-0003-2921-905X ; 0009-0003-2354-3569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732521/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732521/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38117891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Xianzhen</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Duan, Ping</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Yu, Yifeng</creatorcontrib><creatorcontrib>Wei, Wenying</creatorcontrib><creatorcontrib>Wang, Weixing</creatorcontrib><creatorcontrib>Liu, Yuhang</creatorcontrib><creatorcontrib>Cheng, Qiang</creatorcontrib><creatorcontrib>Liang, Xinyue</creatorcontrib><creatorcontrib>Huo, Yuanfang</creatorcontrib><creatorcontrib>Yan, Lesan</creatorcontrib><creatorcontrib>Yu, Aixi</creatorcontrib><creatorcontrib>Dai, Honglian</creatorcontrib><title>An injectable and adaptable hydrogen sulfide delivery system for modulating neuroregenerative microenvironment</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Peripheral nerve regeneration is a complex physiological process. Single-function nerve scaffolds often struggle to quickly adapt to the imbalanced regenerative microenvironment, leading to slow nerve regeneration and limited functional recovery. In this study, we demonstrate a "pleiotropic gas transmitter" strategy based on endogenous reactive oxygen species (ROS), which trigger the on-demand H S release at the defect area for transected peripheral nerve injury (PNI) repair through concurrent neuroregeneration and neuroprotection processing. This H S delivery system consists of an H S donor (peroxyTCM) encapsulated in a ROS-responsive polymer (mPEG-PMet) and loaded into a temperature-sensitive poly (amino acid) hydrogel (mPEG-PA-PP). This multi-effect combination strategy greatly promotes the regeneration of PNI, attributed to the physiological effects of H S. These effects include the inhibition of inflammation and oxidative stress, protection of nerve cells, promotion of angiogenesis, and the restoration of normal mitochondrial function. The adaptive release of pleiotropic messengers to modulate the tissue regeneration microenvironment offers promising peripheral nerve repair and tissue engineering opportunities.</description><subject>Biomedicine and Life Sciences</subject><subject>Humans</subject><subject>Hydrogen Sulfide - pharmacology</subject><subject>Nerve Regeneration</subject><subject>Neuroscience</subject><subject>Peripheral Nerve Injuries - drug therapy</subject><subject>Polyethylene Glycols</subject><subject>Reactive Oxygen Species</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUT1rwzAQFaWlCWnWjkVjl6Q-yZbtqYTQLwh0aWchW-dEwZZSyTbk39chaUin-3r33h2PkHuI5gBMPIXSKN3PlTYQpdkVGTOeJjOWxNn1RT4i0xC2URRBLEQC-S0Z8QwgzXIYE7uw1Ngtlq0qaqTKaqq02h2rzV57t0ZLQ1dXRiPVWJse_Z6GfWixoZXztHG6q1Vr7Jpa7LzzOGygHzo90saU3qHtjXe2QdvekZtK1QGnpzgh368vX8v32erz7WO5WM1KnkM7Q57kDAql4wKLIi4gGh7kBWYVUwJKwaskVmkKDDNe8bzkHFIUueJCpAJz4BPyfOTddUWDuhykvarlzptG-b10ysj_E2s2cu16edBhCTswPJ4YvPvpMLSyMaHEulYWXRcky6M4GbCCD9D5ETr8GoLH6qwDkTwYJY9GyZNRw8LD5XVn-J8t_BfEr5SM</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>Dong, Xianzhen</creator><creator>Zhang, Hao</creator><creator>Duan, Ping</creator><creator>Liu, Kun</creator><creator>Yu, Yifeng</creator><creator>Wei, Wenying</creator><creator>Wang, Weixing</creator><creator>Liu, Yuhang</creator><creator>Cheng, Qiang</creator><creator>Liang, Xinyue</creator><creator>Huo, Yuanfang</creator><creator>Yan, Lesan</creator><creator>Yu, Aixi</creator><creator>Dai, Honglian</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3616-9628</orcidid><orcidid>https://orcid.org/0000-0002-6434-2865</orcidid><orcidid>https://orcid.org/0000-0002-1272-0895</orcidid><orcidid>https://orcid.org/0000-0003-3842-6843</orcidid><orcidid>https://orcid.org/0000-0003-2472-1534</orcidid><orcidid>https://orcid.org/0000-0001-7833-9651</orcidid><orcidid>https://orcid.org/0000-0002-5723-6140</orcidid><orcidid>https://orcid.org/0000-0003-2921-905X</orcidid><orcidid>https://orcid.org/0009-0003-2354-3569</orcidid></search><sort><creationdate>20231222</creationdate><title>An injectable and adaptable hydrogen sulfide delivery system for modulating neuroregenerative microenvironment</title><author>Dong, Xianzhen ; Zhang, Hao ; Duan, Ping ; Liu, Kun ; Yu, Yifeng ; Wei, Wenying ; Wang, Weixing ; Liu, Yuhang ; Cheng, Qiang ; Liang, Xinyue ; Huo, Yuanfang ; Yan, Lesan ; Yu, Aixi ; Dai, Honglian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-e35921bad4bebb4b101073be8f2a61c63f54a7712e83f39c3317e69a36676e913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomedicine and Life Sciences</topic><topic>Humans</topic><topic>Hydrogen Sulfide - pharmacology</topic><topic>Nerve Regeneration</topic><topic>Neuroscience</topic><topic>Peripheral Nerve Injuries - drug therapy</topic><topic>Polyethylene Glycols</topic><topic>Reactive Oxygen Species</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Xianzhen</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Duan, Ping</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Yu, Yifeng</creatorcontrib><creatorcontrib>Wei, Wenying</creatorcontrib><creatorcontrib>Wang, Weixing</creatorcontrib><creatorcontrib>Liu, Yuhang</creatorcontrib><creatorcontrib>Cheng, Qiang</creatorcontrib><creatorcontrib>Liang, Xinyue</creatorcontrib><creatorcontrib>Huo, Yuanfang</creatorcontrib><creatorcontrib>Yan, Lesan</creatorcontrib><creatorcontrib>Yu, Aixi</creatorcontrib><creatorcontrib>Dai, Honglian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Xianzhen</au><au>Zhang, Hao</au><au>Duan, Ping</au><au>Liu, Kun</au><au>Yu, Yifeng</au><au>Wei, Wenying</au><au>Wang, Weixing</au><au>Liu, Yuhang</au><au>Cheng, Qiang</au><au>Liang, Xinyue</au><au>Huo, Yuanfang</au><au>Yan, Lesan</au><au>Yu, Aixi</au><au>Dai, Honglian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An injectable and adaptable hydrogen sulfide delivery system for modulating neuroregenerative microenvironment</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2023-12-22</date><risdate>2023</risdate><volume>9</volume><issue>51</issue><spage>eadi1078</spage><epage>eadi1078</epage><pages>eadi1078-eadi1078</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Peripheral nerve regeneration is a complex physiological process. Single-function nerve scaffolds often struggle to quickly adapt to the imbalanced regenerative microenvironment, leading to slow nerve regeneration and limited functional recovery. In this study, we demonstrate a "pleiotropic gas transmitter" strategy based on endogenous reactive oxygen species (ROS), which trigger the on-demand H S release at the defect area for transected peripheral nerve injury (PNI) repair through concurrent neuroregeneration and neuroprotection processing. This H S delivery system consists of an H S donor (peroxyTCM) encapsulated in a ROS-responsive polymer (mPEG-PMet) and loaded into a temperature-sensitive poly (amino acid) hydrogel (mPEG-PA-PP). This multi-effect combination strategy greatly promotes the regeneration of PNI, attributed to the physiological effects of H S. These effects include the inhibition of inflammation and oxidative stress, protection of nerve cells, promotion of angiogenesis, and the restoration of normal mitochondrial function. The adaptive release of pleiotropic messengers to modulate the tissue regeneration microenvironment offers promising peripheral nerve repair and tissue engineering opportunities.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>38117891</pmid><doi>10.1126/sciadv.adi1078</doi><orcidid>https://orcid.org/0000-0003-3616-9628</orcidid><orcidid>https://orcid.org/0000-0002-6434-2865</orcidid><orcidid>https://orcid.org/0000-0002-1272-0895</orcidid><orcidid>https://orcid.org/0000-0003-3842-6843</orcidid><orcidid>https://orcid.org/0000-0003-2472-1534</orcidid><orcidid>https://orcid.org/0000-0001-7833-9651</orcidid><orcidid>https://orcid.org/0000-0002-5723-6140</orcidid><orcidid>https://orcid.org/0000-0003-2921-905X</orcidid><orcidid>https://orcid.org/0009-0003-2354-3569</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2023-12, Vol.9 (51), p.eadi1078-eadi1078
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10732521
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biomedicine and Life Sciences
Humans
Hydrogen Sulfide - pharmacology
Nerve Regeneration
Neuroscience
Peripheral Nerve Injuries - drug therapy
Polyethylene Glycols
Reactive Oxygen Species
SciAdv r-articles
title An injectable and adaptable hydrogen sulfide delivery system for modulating neuroregenerative microenvironment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20injectable%20and%20adaptable%20hydrogen%20sulfide%20delivery%20system%20for%20modulating%20neuroregenerative%20microenvironment&rft.jtitle=Science%20advances&rft.au=Dong,%20Xianzhen&rft.date=2023-12-22&rft.volume=9&rft.issue=51&rft.spage=eadi1078&rft.epage=eadi1078&rft.pages=eadi1078-eadi1078&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adi1078&rft_dat=%3Cproquest_pubme%3E2904573263%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904573263&rft_id=info:pmid/38117891&rfr_iscdi=true