Nowcasting and Forecasting Seasonal Influenza Epidemics - China, 2022-2023
Seasonal influenza resurged in China in February 2023, causing a large number of hospitalizations. While influenza epidemics occurred across China during the coronavirus disease 2019 (COVID-19) pandemic, the relaxation of COVID-19 containment measures in December 2022 may have contributed to the spr...
Gespeichert in:
Veröffentlicht in: | China CDC Weekly 2023-12, Vol.5 (49), p.1100-1106 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1106 |
---|---|
container_issue | 49 |
container_start_page | 1100 |
container_title | China CDC Weekly |
container_volume | 5 |
creator | Du, Zhanwei Shao, Zengyang Zhang, Xiao Chen, Ruohan Chen, Tianmu Bai, Yuan Wang, Lin Lau, Eric H Y Cowling, Benjamin J |
description | Seasonal influenza resurged in China in February 2023, causing a large number of hospitalizations. While influenza epidemics occurred across China during the coronavirus disease 2019 (COVID-19) pandemic, the relaxation of COVID-19 containment measures in December 2022 may have contributed to the spread of acute respiratory infections in winter 2022/2023.
Using a mathematical model incorporating influenza activity as measured by influenza-like illness (ILI) data for northern and southern regions of China, we reconstructed the seasonal influenza incidence from October 2015 to September 2019 before the COVID-19 pandemic. Using this trained model, we predicted influenza activities in northern and southern China from March to September 2023.
We estimated the effective reproduction number
as 1.08 [95% confidence interval (
): 0.51, 1.65] in northern China and 1.10 (95%
: 0.55, 1.67) in southern China at the start of the 2022-2023 influenza season. We estimated the infection attack rate of this influenza wave as 18.51% (95%
: 0.00%, 37.78%) in northern China and 28.30% (95%
: 14.77%, 41.82%) in southern China.
The 2023 spring wave of seasonal influenza in China spread until July 2023 and infected a substantial number of people. |
doi_str_mv | 10.46234/ccdcw2023.206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10728554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904574493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-32ddc5e626b3e787dbda425a16ae61ebb3a8d4d390038d6cd513d52208b2f2383</originalsourceid><addsrcrecordid>eNpVUT1PwzAQtRCIVqUrI8rIQIp9_ogzIVS1UFTBAMyWYzttUOKUOKWCX09oSwXT3enevfd0D6FzgkdMAGXXxlizAQx0BFgcoT7gVMQJTsjxtk9iSjDpoWEIbxhjSAFAilPUo5IATwnvo4fHemN0aAu_iLS30bRu3O_87HSovS6jmc_LtfNfOpqsCuuqwoQojsbLwuurqJOH-MfDGTrJdRnccF8H6HU6eRnfx_Onu9n4dh4bSEQbU7DWcCdAZNQlMrGZ1Qy4JkI7QVyWUS0tszTFmEorjOWEWg6AZQY5UEkH6GbHu1pnlbPG-bbRpVo1RaWbT1XrQv3f-GKpFvWHIjgByTnrGC73DE39vnahVVURjCtL7V29DgpSzHjCWEo76GgHNU0dQuPygw7BahuCOoSguhC6g4u_7g7w35fTb-QKgaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904574493</pqid></control><display><type>article</type><title>Nowcasting and Forecasting Seasonal Influenza Epidemics - China, 2022-2023</title><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Du, Zhanwei ; Shao, Zengyang ; Zhang, Xiao ; Chen, Ruohan ; Chen, Tianmu ; Bai, Yuan ; Wang, Lin ; Lau, Eric H Y ; Cowling, Benjamin J</creator><creatorcontrib>Du, Zhanwei ; Shao, Zengyang ; Zhang, Xiao ; Chen, Ruohan ; Chen, Tianmu ; Bai, Yuan ; Wang, Lin ; Lau, Eric H Y ; Cowling, Benjamin J ; Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China ; WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China ; Department of Genetics, University of Cambridge, Cambridge, UK ; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, China ; Institute for Health Transformation & School of Health & Social Development, Deakin University, Melbourne, Australia</creatorcontrib><description>Seasonal influenza resurged in China in February 2023, causing a large number of hospitalizations. While influenza epidemics occurred across China during the coronavirus disease 2019 (COVID-19) pandemic, the relaxation of COVID-19 containment measures in December 2022 may have contributed to the spread of acute respiratory infections in winter 2022/2023.
Using a mathematical model incorporating influenza activity as measured by influenza-like illness (ILI) data for northern and southern regions of China, we reconstructed the seasonal influenza incidence from October 2015 to September 2019 before the COVID-19 pandemic. Using this trained model, we predicted influenza activities in northern and southern China from March to September 2023.
We estimated the effective reproduction number
as 1.08 [95% confidence interval (
): 0.51, 1.65] in northern China and 1.10 (95%
: 0.55, 1.67) in southern China at the start of the 2022-2023 influenza season. We estimated the infection attack rate of this influenza wave as 18.51% (95%
: 0.00%, 37.78%) in northern China and 28.30% (95%
: 14.77%, 41.82%) in southern China.
The 2023 spring wave of seasonal influenza in China spread until July 2023 and infected a substantial number of people.</description><identifier>ISSN: 2097-3101</identifier><identifier>EISSN: 2096-7071</identifier><identifier>DOI: 10.46234/ccdcw2023.206</identifier><identifier>PMID: 38125915</identifier><language>eng</language><publisher>China: Editorial Office of CCDCW, Chinese Center for Disease Control and Prevention</publisher><subject>Methods and Applications</subject><ispartof>China CDC Weekly, 2023-12, Vol.5 (49), p.1100-1106</ispartof><rights>Copyright and License information: Editorial Office of CCDCW, Chinese Center for Disease Control and Prevention 2023.</rights><rights>Copyright and License information: Editorial Office of CCDCW, Chinese Center for Disease Control and Prevention 2023 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-32ddc5e626b3e787dbda425a16ae61ebb3a8d4d390038d6cd513d52208b2f2383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10728554/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10728554/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38125915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Zhanwei</creatorcontrib><creatorcontrib>Shao, Zengyang</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Chen, Ruohan</creatorcontrib><creatorcontrib>Chen, Tianmu</creatorcontrib><creatorcontrib>Bai, Yuan</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Lau, Eric H Y</creatorcontrib><creatorcontrib>Cowling, Benjamin J</creatorcontrib><creatorcontrib>Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China</creatorcontrib><creatorcontrib>WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China</creatorcontrib><creatorcontrib>Department of Genetics, University of Cambridge, Cambridge, UK</creatorcontrib><creatorcontrib>State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, China</creatorcontrib><creatorcontrib>Institute for Health Transformation & School of Health & Social Development, Deakin University, Melbourne, Australia</creatorcontrib><title>Nowcasting and Forecasting Seasonal Influenza Epidemics - China, 2022-2023</title><title>China CDC Weekly</title><addtitle>China CDC Wkly</addtitle><description>Seasonal influenza resurged in China in February 2023, causing a large number of hospitalizations. While influenza epidemics occurred across China during the coronavirus disease 2019 (COVID-19) pandemic, the relaxation of COVID-19 containment measures in December 2022 may have contributed to the spread of acute respiratory infections in winter 2022/2023.
Using a mathematical model incorporating influenza activity as measured by influenza-like illness (ILI) data for northern and southern regions of China, we reconstructed the seasonal influenza incidence from October 2015 to September 2019 before the COVID-19 pandemic. Using this trained model, we predicted influenza activities in northern and southern China from March to September 2023.
We estimated the effective reproduction number
as 1.08 [95% confidence interval (
): 0.51, 1.65] in northern China and 1.10 (95%
: 0.55, 1.67) in southern China at the start of the 2022-2023 influenza season. We estimated the infection attack rate of this influenza wave as 18.51% (95%
: 0.00%, 37.78%) in northern China and 28.30% (95%
: 14.77%, 41.82%) in southern China.
The 2023 spring wave of seasonal influenza in China spread until July 2023 and infected a substantial number of people.</description><subject>Methods and Applications</subject><issn>2097-3101</issn><issn>2096-7071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUT1PwzAQtRCIVqUrI8rIQIp9_ogzIVS1UFTBAMyWYzttUOKUOKWCX09oSwXT3enevfd0D6FzgkdMAGXXxlizAQx0BFgcoT7gVMQJTsjxtk9iSjDpoWEIbxhjSAFAilPUo5IATwnvo4fHemN0aAu_iLS30bRu3O_87HSovS6jmc_LtfNfOpqsCuuqwoQojsbLwuurqJOH-MfDGTrJdRnccF8H6HU6eRnfx_Onu9n4dh4bSEQbU7DWcCdAZNQlMrGZ1Qy4JkI7QVyWUS0tszTFmEorjOWEWg6AZQY5UEkH6GbHu1pnlbPG-bbRpVo1RaWbT1XrQv3f-GKpFvWHIjgByTnrGC73DE39vnahVVURjCtL7V29DgpSzHjCWEo76GgHNU0dQuPygw7BahuCOoSguhC6g4u_7g7w35fTb-QKgaA</recordid><startdate>20231208</startdate><enddate>20231208</enddate><creator>Du, Zhanwei</creator><creator>Shao, Zengyang</creator><creator>Zhang, Xiao</creator><creator>Chen, Ruohan</creator><creator>Chen, Tianmu</creator><creator>Bai, Yuan</creator><creator>Wang, Lin</creator><creator>Lau, Eric H Y</creator><creator>Cowling, Benjamin J</creator><general>Editorial Office of CCDCW, Chinese Center for Disease Control and Prevention</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231208</creationdate><title>Nowcasting and Forecasting Seasonal Influenza Epidemics - China, 2022-2023</title><author>Du, Zhanwei ; Shao, Zengyang ; Zhang, Xiao ; Chen, Ruohan ; Chen, Tianmu ; Bai, Yuan ; Wang, Lin ; Lau, Eric H Y ; Cowling, Benjamin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-32ddc5e626b3e787dbda425a16ae61ebb3a8d4d390038d6cd513d52208b2f2383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Methods and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Zhanwei</creatorcontrib><creatorcontrib>Shao, Zengyang</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Chen, Ruohan</creatorcontrib><creatorcontrib>Chen, Tianmu</creatorcontrib><creatorcontrib>Bai, Yuan</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Lau, Eric H Y</creatorcontrib><creatorcontrib>Cowling, Benjamin J</creatorcontrib><creatorcontrib>Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China</creatorcontrib><creatorcontrib>WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China</creatorcontrib><creatorcontrib>Department of Genetics, University of Cambridge, Cambridge, UK</creatorcontrib><creatorcontrib>State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, China</creatorcontrib><creatorcontrib>Institute for Health Transformation & School of Health & Social Development, Deakin University, Melbourne, Australia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>China CDC Weekly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Zhanwei</au><au>Shao, Zengyang</au><au>Zhang, Xiao</au><au>Chen, Ruohan</au><au>Chen, Tianmu</au><au>Bai, Yuan</au><au>Wang, Lin</au><au>Lau, Eric H Y</au><au>Cowling, Benjamin J</au><aucorp>Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China</aucorp><aucorp>WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China</aucorp><aucorp>Department of Genetics, University of Cambridge, Cambridge, UK</aucorp><aucorp>State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, China</aucorp><aucorp>Institute for Health Transformation & School of Health & Social Development, Deakin University, Melbourne, Australia</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nowcasting and Forecasting Seasonal Influenza Epidemics - China, 2022-2023</atitle><jtitle>China CDC Weekly</jtitle><addtitle>China CDC Wkly</addtitle><date>2023-12-08</date><risdate>2023</risdate><volume>5</volume><issue>49</issue><spage>1100</spage><epage>1106</epage><pages>1100-1106</pages><issn>2097-3101</issn><eissn>2096-7071</eissn><abstract>Seasonal influenza resurged in China in February 2023, causing a large number of hospitalizations. While influenza epidemics occurred across China during the coronavirus disease 2019 (COVID-19) pandemic, the relaxation of COVID-19 containment measures in December 2022 may have contributed to the spread of acute respiratory infections in winter 2022/2023.
Using a mathematical model incorporating influenza activity as measured by influenza-like illness (ILI) data for northern and southern regions of China, we reconstructed the seasonal influenza incidence from October 2015 to September 2019 before the COVID-19 pandemic. Using this trained model, we predicted influenza activities in northern and southern China from March to September 2023.
We estimated the effective reproduction number
as 1.08 [95% confidence interval (
): 0.51, 1.65] in northern China and 1.10 (95%
: 0.55, 1.67) in southern China at the start of the 2022-2023 influenza season. We estimated the infection attack rate of this influenza wave as 18.51% (95%
: 0.00%, 37.78%) in northern China and 28.30% (95%
: 14.77%, 41.82%) in southern China.
The 2023 spring wave of seasonal influenza in China spread until July 2023 and infected a substantial number of people.</abstract><cop>China</cop><pub>Editorial Office of CCDCW, Chinese Center for Disease Control and Prevention</pub><pmid>38125915</pmid><doi>10.46234/ccdcw2023.206</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2097-3101 |
ispartof | China CDC Weekly, 2023-12, Vol.5 (49), p.1100-1106 |
issn | 2097-3101 2096-7071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10728554 |
source | PubMed Central Open Access; PubMed Central |
subjects | Methods and Applications |
title | Nowcasting and Forecasting Seasonal Influenza Epidemics - China, 2022-2023 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nowcasting%20and%20Forecasting%20Seasonal%20Influenza%20Epidemics%20-%20China,%202022-2023&rft.jtitle=China%20CDC%20Weekly&rft.au=Du,%20Zhanwei&rft.aucorp=Laboratory%20of%20Data%20Discovery%20for%20Health%20Limited,%20Hong%20Kong%20Science%20and%20Technology%20Park,%20Hong%20Kong%20Special%20Administrative%20Region,%20China&rft.date=2023-12-08&rft.volume=5&rft.issue=49&rft.spage=1100&rft.epage=1106&rft.pages=1100-1106&rft.issn=2097-3101&rft.eissn=2096-7071&rft_id=info:doi/10.46234/ccdcw2023.206&rft_dat=%3Cproquest_pubme%3E2904574493%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904574493&rft_id=info:pmid/38125915&rfr_iscdi=true |