Constructing Mixed Density Functionals for Describing Dissociative Chemisorption on Metal Surfaces: Basic Principles
The production of a majority of chemicals involves heterogeneous catalysis at some stage, and the rates of many heterogeneously catalyzed processes are governed by transition states for dissociative chemisorption on metals. Accurate values of barrier heights for dissociative chemisorption on metals...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2023-12, Vol.127 (49), p.10481-10498 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10498 |
---|---|
container_issue | 49 |
container_start_page | 10481 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 127 |
creator | Tchakoua, Théophile Jansen, Tim van Nies, Youri van den Elshout, Rebecca F. A. van Boxmeer, Bart A. B. Poort, Saskia P. Ackermans, Michelle G. Beltrão, Gabriel Spiller Hildebrand, Stefan A. Beekman, Steijn E. J. van der Drift, Thijs Kaart, Sam Šantić, Anthonie Spuijbroek, Esmee E. Gerrits, Nick Somers, Mark F. Kroes, Geert-Jan |
description | The production of a majority of chemicals involves heterogeneous catalysis at some stage, and the rates of many heterogeneously catalyzed processes are governed by transition states for dissociative chemisorption on metals. Accurate values of barrier heights for dissociative chemisorption on metals are therefore important to benchmarking electronic structure theory in general and density functionals in particular. Such accurate barriers can be obtained using the semiempirical specific reaction parameter (SRP) approach to density functional theory. However, this approach has thus far been rather ad hoc in its choice of the generic expression of the SRP functional to be used, and there is a need for better heuristic approaches to determining the mixing parameters contained in such expressions. Here we address these two issues. We investigate the ability of several mixed, parametrized density functional expressions combining exchange at the generalized gradient approximation (GGA) level with either GGA or nonlocal correlation to reproduce barrier heights for dissociative chemisorption on metal surfaces. For this, seven expressions of such mixed density functionals are tested on a database consisting of results for 16 systems taken from a recently published slightly larger database called SBH17. Three expressions are derived that exhibit high tunability and use correlation functionals that are either of the PBE GGA form or of one of two limiting nonlocal forms also describing the attractive van der Waals interaction in an approximate way. We also find that, for mixed density functionals incorporating GGA correlation, the optimum fraction of repulsive RPBE GGA exchange obtained with a specific GGA density functional is correlated with the charge-transfer parameter, which is equal to the difference in the work function of the metal surface and the electron affinity of the molecule. However, the correlation is generally not large and not large enough to obtain accurate guesses of the mixing parameter for the systems considered, suggesting that it does not give rise to a very effective search strategy. |
doi_str_mv | 10.1021/acs.jpca.3c01932 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10726370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898955162</sourcerecordid><originalsourceid>FETCH-LOGICAL-a434t-a84dade667e65a2176b17bdb74954695229659bbcaf689fd063949e7d437ccf23</originalsourceid><addsrcrecordid>eNp1kc1PFTEUxRuiAUT2rEiXLpxnP6adqRuiD1ETiCbKuul0OlAyrx16O0T-ezu-J5GFSZM2t-ece29-CJ1QsqKE0XfGwupusmbFLaGKsz10SAUjlWBUvChv0qpKSK4O0CuAO0II5azeRwe8JYJyQg5RXscAOc02-3CDr_wv1-NzF8DnR3wxh1KOwYyAh5hKHWzy3SI89wDRepP9g8PrW7fxENO0iHE5Vy6bEf-Y02Csg_f4owFv8ffkg_XT6OA1ejmUUHe8u4_Q9cWnn-sv1eW3z1_XHy4rU_M6V6ate9M7KRsnhWG0kR1tur5raiVqqQRjSgrVddYMslVDT8qmtXJNX_PG2oHxI3S2zZ3mbuN660JOZtRT8huTHnU0Xj__Cf5W38QHTUnDJG9ISXizS0jxfnaQddnUunE0wcUZNGtVq4SgcmlGtlKbIkByw1MfSvRCSxdaeqGld7SK5fTf-Z4Mf_EUwdut4I81zmlh8f-830jUo_I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898955162</pqid></control><display><type>article</type><title>Constructing Mixed Density Functionals for Describing Dissociative Chemisorption on Metal Surfaces: Basic Principles</title><source>ACS Publications</source><creator>Tchakoua, Théophile ; Jansen, Tim ; van Nies, Youri ; van den Elshout, Rebecca F. A. ; van Boxmeer, Bart A. B. ; Poort, Saskia P. ; Ackermans, Michelle G. ; Beltrão, Gabriel Spiller ; Hildebrand, Stefan A. ; Beekman, Steijn E. J. ; van der Drift, Thijs ; Kaart, Sam ; Šantić, Anthonie ; Spuijbroek, Esmee E. ; Gerrits, Nick ; Somers, Mark F. ; Kroes, Geert-Jan</creator><creatorcontrib>Tchakoua, Théophile ; Jansen, Tim ; van Nies, Youri ; van den Elshout, Rebecca F. A. ; van Boxmeer, Bart A. B. ; Poort, Saskia P. ; Ackermans, Michelle G. ; Beltrão, Gabriel Spiller ; Hildebrand, Stefan A. ; Beekman, Steijn E. J. ; van der Drift, Thijs ; Kaart, Sam ; Šantić, Anthonie ; Spuijbroek, Esmee E. ; Gerrits, Nick ; Somers, Mark F. ; Kroes, Geert-Jan</creatorcontrib><description>The production of a majority of chemicals involves heterogeneous catalysis at some stage, and the rates of many heterogeneously catalyzed processes are governed by transition states for dissociative chemisorption on metals. Accurate values of barrier heights for dissociative chemisorption on metals are therefore important to benchmarking electronic structure theory in general and density functionals in particular. Such accurate barriers can be obtained using the semiempirical specific reaction parameter (SRP) approach to density functional theory. However, this approach has thus far been rather ad hoc in its choice of the generic expression of the SRP functional to be used, and there is a need for better heuristic approaches to determining the mixing parameters contained in such expressions. Here we address these two issues. We investigate the ability of several mixed, parametrized density functional expressions combining exchange at the generalized gradient approximation (GGA) level with either GGA or nonlocal correlation to reproduce barrier heights for dissociative chemisorption on metal surfaces. For this, seven expressions of such mixed density functionals are tested on a database consisting of results for 16 systems taken from a recently published slightly larger database called SBH17. Three expressions are derived that exhibit high tunability and use correlation functionals that are either of the PBE GGA form or of one of two limiting nonlocal forms also describing the attractive van der Waals interaction in an approximate way. We also find that, for mixed density functionals incorporating GGA correlation, the optimum fraction of repulsive RPBE GGA exchange obtained with a specific GGA density functional is correlated with the charge-transfer parameter, which is equal to the difference in the work function of the metal surface and the electron affinity of the molecule. However, the correlation is generally not large and not large enough to obtain accurate guesses of the mixing parameter for the systems considered, suggesting that it does not give rise to a very effective search strategy.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.3c01932</identifier><identifier>PMID: 38051300</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: New Tools and Methods in Experiment and Theory</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2023-12, Vol.127 (49), p.10481-10498</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a434t-a84dade667e65a2176b17bdb74954695229659bbcaf689fd063949e7d437ccf23</citedby><cites>FETCH-LOGICAL-a434t-a84dade667e65a2176b17bdb74954695229659bbcaf689fd063949e7d437ccf23</cites><orcidid>0000-0001-9364-8700 ; 0009-0002-3676-9287 ; 0000-0002-4913-4689 ; 0009-0000-5369-688X ; 0009-0006-3123-0986 ; 0000-0001-5405-7860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.3c01932$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.3c01932$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38051300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tchakoua, Théophile</creatorcontrib><creatorcontrib>Jansen, Tim</creatorcontrib><creatorcontrib>van Nies, Youri</creatorcontrib><creatorcontrib>van den Elshout, Rebecca F. A.</creatorcontrib><creatorcontrib>van Boxmeer, Bart A. B.</creatorcontrib><creatorcontrib>Poort, Saskia P.</creatorcontrib><creatorcontrib>Ackermans, Michelle G.</creatorcontrib><creatorcontrib>Beltrão, Gabriel Spiller</creatorcontrib><creatorcontrib>Hildebrand, Stefan A.</creatorcontrib><creatorcontrib>Beekman, Steijn E. J.</creatorcontrib><creatorcontrib>van der Drift, Thijs</creatorcontrib><creatorcontrib>Kaart, Sam</creatorcontrib><creatorcontrib>Šantić, Anthonie</creatorcontrib><creatorcontrib>Spuijbroek, Esmee E.</creatorcontrib><creatorcontrib>Gerrits, Nick</creatorcontrib><creatorcontrib>Somers, Mark F.</creatorcontrib><creatorcontrib>Kroes, Geert-Jan</creatorcontrib><title>Constructing Mixed Density Functionals for Describing Dissociative Chemisorption on Metal Surfaces: Basic Principles</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The production of a majority of chemicals involves heterogeneous catalysis at some stage, and the rates of many heterogeneously catalyzed processes are governed by transition states for dissociative chemisorption on metals. Accurate values of barrier heights for dissociative chemisorption on metals are therefore important to benchmarking electronic structure theory in general and density functionals in particular. Such accurate barriers can be obtained using the semiempirical specific reaction parameter (SRP) approach to density functional theory. However, this approach has thus far been rather ad hoc in its choice of the generic expression of the SRP functional to be used, and there is a need for better heuristic approaches to determining the mixing parameters contained in such expressions. Here we address these two issues. We investigate the ability of several mixed, parametrized density functional expressions combining exchange at the generalized gradient approximation (GGA) level with either GGA or nonlocal correlation to reproduce barrier heights for dissociative chemisorption on metal surfaces. For this, seven expressions of such mixed density functionals are tested on a database consisting of results for 16 systems taken from a recently published slightly larger database called SBH17. Three expressions are derived that exhibit high tunability and use correlation functionals that are either of the PBE GGA form or of one of two limiting nonlocal forms also describing the attractive van der Waals interaction in an approximate way. We also find that, for mixed density functionals incorporating GGA correlation, the optimum fraction of repulsive RPBE GGA exchange obtained with a specific GGA density functional is correlated with the charge-transfer parameter, which is equal to the difference in the work function of the metal surface and the electron affinity of the molecule. However, the correlation is generally not large and not large enough to obtain accurate guesses of the mixing parameter for the systems considered, suggesting that it does not give rise to a very effective search strategy.</description><subject>A: New Tools and Methods in Experiment and Theory</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kc1PFTEUxRuiAUT2rEiXLpxnP6adqRuiD1ETiCbKuul0OlAyrx16O0T-ezu-J5GFSZM2t-ece29-CJ1QsqKE0XfGwupusmbFLaGKsz10SAUjlWBUvChv0qpKSK4O0CuAO0II5azeRwe8JYJyQg5RXscAOc02-3CDr_wv1-NzF8DnR3wxh1KOwYyAh5hKHWzy3SI89wDRepP9g8PrW7fxENO0iHE5Vy6bEf-Y02Csg_f4owFv8ffkg_XT6OA1ejmUUHe8u4_Q9cWnn-sv1eW3z1_XHy4rU_M6V6ate9M7KRsnhWG0kR1tur5raiVqqQRjSgrVddYMslVDT8qmtXJNX_PG2oHxI3S2zZ3mbuN660JOZtRT8huTHnU0Xj__Cf5W38QHTUnDJG9ISXizS0jxfnaQddnUunE0wcUZNGtVq4SgcmlGtlKbIkByw1MfSvRCSxdaeqGld7SK5fTf-Z4Mf_EUwdut4I81zmlh8f-830jUo_I</recordid><startdate>20231214</startdate><enddate>20231214</enddate><creator>Tchakoua, Théophile</creator><creator>Jansen, Tim</creator><creator>van Nies, Youri</creator><creator>van den Elshout, Rebecca F. A.</creator><creator>van Boxmeer, Bart A. B.</creator><creator>Poort, Saskia P.</creator><creator>Ackermans, Michelle G.</creator><creator>Beltrão, Gabriel Spiller</creator><creator>Hildebrand, Stefan A.</creator><creator>Beekman, Steijn E. J.</creator><creator>van der Drift, Thijs</creator><creator>Kaart, Sam</creator><creator>Šantić, Anthonie</creator><creator>Spuijbroek, Esmee E.</creator><creator>Gerrits, Nick</creator><creator>Somers, Mark F.</creator><creator>Kroes, Geert-Jan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9364-8700</orcidid><orcidid>https://orcid.org/0009-0002-3676-9287</orcidid><orcidid>https://orcid.org/0000-0002-4913-4689</orcidid><orcidid>https://orcid.org/0009-0000-5369-688X</orcidid><orcidid>https://orcid.org/0009-0006-3123-0986</orcidid><orcidid>https://orcid.org/0000-0001-5405-7860</orcidid></search><sort><creationdate>20231214</creationdate><title>Constructing Mixed Density Functionals for Describing Dissociative Chemisorption on Metal Surfaces: Basic Principles</title><author>Tchakoua, Théophile ; Jansen, Tim ; van Nies, Youri ; van den Elshout, Rebecca F. A. ; van Boxmeer, Bart A. B. ; Poort, Saskia P. ; Ackermans, Michelle G. ; Beltrão, Gabriel Spiller ; Hildebrand, Stefan A. ; Beekman, Steijn E. J. ; van der Drift, Thijs ; Kaart, Sam ; Šantić, Anthonie ; Spuijbroek, Esmee E. ; Gerrits, Nick ; Somers, Mark F. ; Kroes, Geert-Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a434t-a84dade667e65a2176b17bdb74954695229659bbcaf689fd063949e7d437ccf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>A: New Tools and Methods in Experiment and Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tchakoua, Théophile</creatorcontrib><creatorcontrib>Jansen, Tim</creatorcontrib><creatorcontrib>van Nies, Youri</creatorcontrib><creatorcontrib>van den Elshout, Rebecca F. A.</creatorcontrib><creatorcontrib>van Boxmeer, Bart A. B.</creatorcontrib><creatorcontrib>Poort, Saskia P.</creatorcontrib><creatorcontrib>Ackermans, Michelle G.</creatorcontrib><creatorcontrib>Beltrão, Gabriel Spiller</creatorcontrib><creatorcontrib>Hildebrand, Stefan A.</creatorcontrib><creatorcontrib>Beekman, Steijn E. J.</creatorcontrib><creatorcontrib>van der Drift, Thijs</creatorcontrib><creatorcontrib>Kaart, Sam</creatorcontrib><creatorcontrib>Šantić, Anthonie</creatorcontrib><creatorcontrib>Spuijbroek, Esmee E.</creatorcontrib><creatorcontrib>Gerrits, Nick</creatorcontrib><creatorcontrib>Somers, Mark F.</creatorcontrib><creatorcontrib>Kroes, Geert-Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tchakoua, Théophile</au><au>Jansen, Tim</au><au>van Nies, Youri</au><au>van den Elshout, Rebecca F. A.</au><au>van Boxmeer, Bart A. B.</au><au>Poort, Saskia P.</au><au>Ackermans, Michelle G.</au><au>Beltrão, Gabriel Spiller</au><au>Hildebrand, Stefan A.</au><au>Beekman, Steijn E. J.</au><au>van der Drift, Thijs</au><au>Kaart, Sam</au><au>Šantić, Anthonie</au><au>Spuijbroek, Esmee E.</au><au>Gerrits, Nick</au><au>Somers, Mark F.</au><au>Kroes, Geert-Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Mixed Density Functionals for Describing Dissociative Chemisorption on Metal Surfaces: Basic Principles</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2023-12-14</date><risdate>2023</risdate><volume>127</volume><issue>49</issue><spage>10481</spage><epage>10498</epage><pages>10481-10498</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The production of a majority of chemicals involves heterogeneous catalysis at some stage, and the rates of many heterogeneously catalyzed processes are governed by transition states for dissociative chemisorption on metals. Accurate values of barrier heights for dissociative chemisorption on metals are therefore important to benchmarking electronic structure theory in general and density functionals in particular. Such accurate barriers can be obtained using the semiempirical specific reaction parameter (SRP) approach to density functional theory. However, this approach has thus far been rather ad hoc in its choice of the generic expression of the SRP functional to be used, and there is a need for better heuristic approaches to determining the mixing parameters contained in such expressions. Here we address these two issues. We investigate the ability of several mixed, parametrized density functional expressions combining exchange at the generalized gradient approximation (GGA) level with either GGA or nonlocal correlation to reproduce barrier heights for dissociative chemisorption on metal surfaces. For this, seven expressions of such mixed density functionals are tested on a database consisting of results for 16 systems taken from a recently published slightly larger database called SBH17. Three expressions are derived that exhibit high tunability and use correlation functionals that are either of the PBE GGA form or of one of two limiting nonlocal forms also describing the attractive van der Waals interaction in an approximate way. We also find that, for mixed density functionals incorporating GGA correlation, the optimum fraction of repulsive RPBE GGA exchange obtained with a specific GGA density functional is correlated with the charge-transfer parameter, which is equal to the difference in the work function of the metal surface and the electron affinity of the molecule. However, the correlation is generally not large and not large enough to obtain accurate guesses of the mixing parameter for the systems considered, suggesting that it does not give rise to a very effective search strategy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38051300</pmid><doi>10.1021/acs.jpca.3c01932</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9364-8700</orcidid><orcidid>https://orcid.org/0009-0002-3676-9287</orcidid><orcidid>https://orcid.org/0000-0002-4913-4689</orcidid><orcidid>https://orcid.org/0009-0000-5369-688X</orcidid><orcidid>https://orcid.org/0009-0006-3123-0986</orcidid><orcidid>https://orcid.org/0000-0001-5405-7860</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2023-12, Vol.127 (49), p.10481-10498 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10726370 |
source | ACS Publications |
subjects | A: New Tools and Methods in Experiment and Theory |
title | Constructing Mixed Density Functionals for Describing Dissociative Chemisorption on Metal Surfaces: Basic Principles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Mixed%20Density%20Functionals%20for%20Describing%20Dissociative%20Chemisorption%20on%20Metal%20Surfaces:%20Basic%20Principles&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Tchakoua,%20The%CC%81ophile&rft.date=2023-12-14&rft.volume=127&rft.issue=49&rft.spage=10481&rft.epage=10498&rft.pages=10481-10498&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.3c01932&rft_dat=%3Cproquest_pubme%3E2898955162%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898955162&rft_id=info:pmid/38051300&rfr_iscdi=true |