Imaging quantum oscillations and millitesla pseudomagnetic fields in graphene

The exceptional control of the electronic energy bands in atomically thin quantum materials has led to the discovery of several emergent phenomena 1 . However, at present there is no versatile method for mapping the local band structure in advanced two-dimensional materials devices in which the acti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2023-12, Vol.624 (7991), p.275-281
Hauptverfasser: Zhou, Haibiao, Auerbach, Nadav, Uzan, Matan, Zhou, Yaozhang, Banu, Nasrin, Zhi, Weifeng, Huber, Martin E., Watanabe, Kenji, Taniguchi, Takashi, Myasoedov, Yuri, Yan, Binghai, Zeldov, Eli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 7991
container_start_page 275
container_title Nature (London)
container_volume 624
creator Zhou, Haibiao
Auerbach, Nadav
Uzan, Matan
Zhou, Yaozhang
Banu, Nasrin
Zhi, Weifeng
Huber, Martin E.
Watanabe, Kenji
Taniguchi, Takashi
Myasoedov, Yuri
Yan, Binghai
Zeldov, Eli
description The exceptional control of the electronic energy bands in atomically thin quantum materials has led to the discovery of several emergent phenomena 1 . However, at present there is no versatile method for mapping the local band structure in advanced two-dimensional materials devices in which the active layer is commonly embedded in the insulating layers and metallic gates. Using a scanning superconducting quantum interference device, here we image the de Haas–van Alphen quantum oscillations in a model system, the Bernal-stacked trilayer graphene with dual gates, which shows several highly tunable bands 2 – 4 . By resolving thermodynamic quantum oscillations spanning more than 100 Landau levels in low magnetic fields, we reconstruct the band structure and its evolution with the displacement field with excellent precision and nanoscale spatial resolution. Moreover, by developing Landau-level interferometry, we show shear-strain-induced pseudomagnetic fields and map their spatial dependence. In contrast to artificially induced large strain, which leads to pseudomagnetic fields of hundreds of tesla 5 – 7 , we detect naturally occurring pseudomagnetic fields as low as 1 mT corresponding to graphene twisting by 1 millidegree, two orders of magnitude lower than the typical angle disorder in twisted bilayer graphene 8 – 11 . This ability to resolve the local band structure and strain at the nanoscale level enables the characterization and use of tunable band engineering in practical van der Waals devices. Imaging of quantum oscillations in Bernal-stacked trilayer graphene with dual gates enables high-precision reconstruction of the highly tunable bands and reveals naturally occurring pseudomagnetic fields as low as 1 mT corresponding to graphene twisting by 1 millidegree.
doi_str_mv 10.1038/s41586-023-06763-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10719110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892946437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f40d57f37787a96159a01f1a03ced0a4c3e17326a473dc06a3784474176345b23</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EorcX_gALFIlNN4Hxc5xVVVV9SUVsYG25jpO6SuxbO6nUf4_hlvJYsLKs-c6xzxxC3lH4SIHrT0VQqVULjLegUPFWviAbKlC1Qml8STYATLeguTogh6XcAYCkKF6TA45dx5HqDfl8NdsxxLG5X21c1rlJxYVpsktIsTQ29s1cr2HxZbLNrvi1T1UQ_RJcMwQ_9aUJsRmz3d366N-QV4Odin_7dG7Jt_Ozr6eX7fWXi6vTk-vWCZRLOwjoJQ4cUaPtFJWdBTpQC9z5Hqxw3FPkTFmBvHegLEctBApaQwp5w_iWHO99d-vN7Hvn45LtZHY5zDY_mmSD-XsSw60Z04OhgLSjdXtbcvTkkNP96sti5lCcr8mjT2sxTHesE0pwrOiHf9C7tOZY8xnWAcO6cckrxfaUy6mU7Ifn31AwP-oy-7pMrcv8rMvIKnr_Z45nya9-KsD3QKmjOPr8--3_2H4H5bqggA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902714753</pqid></control><display><type>article</type><title>Imaging quantum oscillations and millitesla pseudomagnetic fields in graphene</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Haibiao ; Auerbach, Nadav ; Uzan, Matan ; Zhou, Yaozhang ; Banu, Nasrin ; Zhi, Weifeng ; Huber, Martin E. ; Watanabe, Kenji ; Taniguchi, Takashi ; Myasoedov, Yuri ; Yan, Binghai ; Zeldov, Eli</creator><creatorcontrib>Zhou, Haibiao ; Auerbach, Nadav ; Uzan, Matan ; Zhou, Yaozhang ; Banu, Nasrin ; Zhi, Weifeng ; Huber, Martin E. ; Watanabe, Kenji ; Taniguchi, Takashi ; Myasoedov, Yuri ; Yan, Binghai ; Zeldov, Eli</creatorcontrib><description>The exceptional control of the electronic energy bands in atomically thin quantum materials has led to the discovery of several emergent phenomena 1 . However, at present there is no versatile method for mapping the local band structure in advanced two-dimensional materials devices in which the active layer is commonly embedded in the insulating layers and metallic gates. Using a scanning superconducting quantum interference device, here we image the de Haas–van Alphen quantum oscillations in a model system, the Bernal-stacked trilayer graphene with dual gates, which shows several highly tunable bands 2 – 4 . By resolving thermodynamic quantum oscillations spanning more than 100 Landau levels in low magnetic fields, we reconstruct the band structure and its evolution with the displacement field with excellent precision and nanoscale spatial resolution. Moreover, by developing Landau-level interferometry, we show shear-strain-induced pseudomagnetic fields and map their spatial dependence. In contrast to artificially induced large strain, which leads to pseudomagnetic fields of hundreds of tesla 5 – 7 , we detect naturally occurring pseudomagnetic fields as low as 1 mT corresponding to graphene twisting by 1 millidegree, two orders of magnitude lower than the typical angle disorder in twisted bilayer graphene 8 – 11 . This ability to resolve the local band structure and strain at the nanoscale level enables the characterization and use of tunable band engineering in practical van der Waals devices. Imaging of quantum oscillations in Bernal-stacked trilayer graphene with dual gates enables high-precision reconstruction of the highly tunable bands and reveals naturally occurring pseudomagnetic fields as low as 1 mT corresponding to graphene twisting by 1 millidegree.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-06763-5</identifier><identifier>PMID: 37993718</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; 639/925/918/1052 ; Active layer ; Amines ; Band structure of solids ; Cytoskeleton ; De Haas-Van Alphen effect ; Diagnostic Imaging ; Electronics ; Electrons ; Energy bands ; Graphene ; Graphite ; Humanities and Social Sciences ; Insulating layers ; Insulation ; Interferometry ; Magnetic fields ; multidisciplinary ; Oscillations ; Science ; Science (multidisciplinary) ; Spatial discrimination ; Spatial resolution ; Superconducting quantum interference devices ; Symmetry ; Two dimensional materials</subject><ispartof>Nature (London), 2023-12, Vol.624 (7991), p.275-281</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Dec 14, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f40d57f37787a96159a01f1a03ced0a4c3e17326a473dc06a3784474176345b23</citedby><cites>FETCH-LOGICAL-c475t-f40d57f37787a96159a01f1a03ced0a4c3e17326a473dc06a3784474176345b23</cites><orcidid>0000-0002-7638-902X ; 0000-0002-8200-4974 ; 0000-0002-1467-3105 ; 0000-0003-2164-5839 ; 0000-0001-9773-7719 ; 0000-0003-3701-8119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-023-06763-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-023-06763-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37993718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Haibiao</creatorcontrib><creatorcontrib>Auerbach, Nadav</creatorcontrib><creatorcontrib>Uzan, Matan</creatorcontrib><creatorcontrib>Zhou, Yaozhang</creatorcontrib><creatorcontrib>Banu, Nasrin</creatorcontrib><creatorcontrib>Zhi, Weifeng</creatorcontrib><creatorcontrib>Huber, Martin E.</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Myasoedov, Yuri</creatorcontrib><creatorcontrib>Yan, Binghai</creatorcontrib><creatorcontrib>Zeldov, Eli</creatorcontrib><title>Imaging quantum oscillations and millitesla pseudomagnetic fields in graphene</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The exceptional control of the electronic energy bands in atomically thin quantum materials has led to the discovery of several emergent phenomena 1 . However, at present there is no versatile method for mapping the local band structure in advanced two-dimensional materials devices in which the active layer is commonly embedded in the insulating layers and metallic gates. Using a scanning superconducting quantum interference device, here we image the de Haas–van Alphen quantum oscillations in a model system, the Bernal-stacked trilayer graphene with dual gates, which shows several highly tunable bands 2 – 4 . By resolving thermodynamic quantum oscillations spanning more than 100 Landau levels in low magnetic fields, we reconstruct the band structure and its evolution with the displacement field with excellent precision and nanoscale spatial resolution. Moreover, by developing Landau-level interferometry, we show shear-strain-induced pseudomagnetic fields and map their spatial dependence. In contrast to artificially induced large strain, which leads to pseudomagnetic fields of hundreds of tesla 5 – 7 , we detect naturally occurring pseudomagnetic fields as low as 1 mT corresponding to graphene twisting by 1 millidegree, two orders of magnitude lower than the typical angle disorder in twisted bilayer graphene 8 – 11 . This ability to resolve the local band structure and strain at the nanoscale level enables the characterization and use of tunable band engineering in practical van der Waals devices. Imaging of quantum oscillations in Bernal-stacked trilayer graphene with dual gates enables high-precision reconstruction of the highly tunable bands and reveals naturally occurring pseudomagnetic fields as low as 1 mT corresponding to graphene twisting by 1 millidegree.</description><subject>639/301/119/995</subject><subject>639/925/918/1052</subject><subject>Active layer</subject><subject>Amines</subject><subject>Band structure of solids</subject><subject>Cytoskeleton</subject><subject>De Haas-Van Alphen effect</subject><subject>Diagnostic Imaging</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Energy bands</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Humanities and Social Sciences</subject><subject>Insulating layers</subject><subject>Insulation</subject><subject>Interferometry</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Oscillations</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Superconducting quantum interference devices</subject><subject>Symmetry</subject><subject>Two dimensional materials</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtv1TAQhS0EorcX_gALFIlNN4Hxc5xVVVV9SUVsYG25jpO6SuxbO6nUf4_hlvJYsLKs-c6xzxxC3lH4SIHrT0VQqVULjLegUPFWviAbKlC1Qml8STYATLeguTogh6XcAYCkKF6TA45dx5HqDfl8NdsxxLG5X21c1rlJxYVpsktIsTQ29s1cr2HxZbLNrvi1T1UQ_RJcMwQ_9aUJsRmz3d366N-QV4Odin_7dG7Jt_Ozr6eX7fWXi6vTk-vWCZRLOwjoJQ4cUaPtFJWdBTpQC9z5Hqxw3FPkTFmBvHegLEctBApaQwp5w_iWHO99d-vN7Hvn45LtZHY5zDY_mmSD-XsSw60Z04OhgLSjdXtbcvTkkNP96sti5lCcr8mjT2sxTHesE0pwrOiHf9C7tOZY8xnWAcO6cckrxfaUy6mU7Ifn31AwP-oy-7pMrcv8rMvIKnr_Z45nya9-KsD3QKmjOPr8--3_2H4H5bqggA</recordid><startdate>20231214</startdate><enddate>20231214</enddate><creator>Zhou, Haibiao</creator><creator>Auerbach, Nadav</creator><creator>Uzan, Matan</creator><creator>Zhou, Yaozhang</creator><creator>Banu, Nasrin</creator><creator>Zhi, Weifeng</creator><creator>Huber, Martin E.</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Myasoedov, Yuri</creator><creator>Yan, Binghai</creator><creator>Zeldov, Eli</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7638-902X</orcidid><orcidid>https://orcid.org/0000-0002-8200-4974</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-2164-5839</orcidid><orcidid>https://orcid.org/0000-0001-9773-7719</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid></search><sort><creationdate>20231214</creationdate><title>Imaging quantum oscillations and millitesla pseudomagnetic fields in graphene</title><author>Zhou, Haibiao ; Auerbach, Nadav ; Uzan, Matan ; Zhou, Yaozhang ; Banu, Nasrin ; Zhi, Weifeng ; Huber, Martin E. ; Watanabe, Kenji ; Taniguchi, Takashi ; Myasoedov, Yuri ; Yan, Binghai ; Zeldov, Eli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f40d57f37787a96159a01f1a03ced0a4c3e17326a473dc06a3784474176345b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/119/995</topic><topic>639/925/918/1052</topic><topic>Active layer</topic><topic>Amines</topic><topic>Band structure of solids</topic><topic>Cytoskeleton</topic><topic>De Haas-Van Alphen effect</topic><topic>Diagnostic Imaging</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Energy bands</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Humanities and Social Sciences</topic><topic>Insulating layers</topic><topic>Insulation</topic><topic>Interferometry</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Oscillations</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Superconducting quantum interference devices</topic><topic>Symmetry</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Haibiao</creatorcontrib><creatorcontrib>Auerbach, Nadav</creatorcontrib><creatorcontrib>Uzan, Matan</creatorcontrib><creatorcontrib>Zhou, Yaozhang</creatorcontrib><creatorcontrib>Banu, Nasrin</creatorcontrib><creatorcontrib>Zhi, Weifeng</creatorcontrib><creatorcontrib>Huber, Martin E.</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Myasoedov, Yuri</creatorcontrib><creatorcontrib>Yan, Binghai</creatorcontrib><creatorcontrib>Zeldov, Eli</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Haibiao</au><au>Auerbach, Nadav</au><au>Uzan, Matan</au><au>Zhou, Yaozhang</au><au>Banu, Nasrin</au><au>Zhi, Weifeng</au><au>Huber, Martin E.</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Myasoedov, Yuri</au><au>Yan, Binghai</au><au>Zeldov, Eli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging quantum oscillations and millitesla pseudomagnetic fields in graphene</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-12-14</date><risdate>2023</risdate><volume>624</volume><issue>7991</issue><spage>275</spage><epage>281</epage><pages>275-281</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The exceptional control of the electronic energy bands in atomically thin quantum materials has led to the discovery of several emergent phenomena 1 . However, at present there is no versatile method for mapping the local band structure in advanced two-dimensional materials devices in which the active layer is commonly embedded in the insulating layers and metallic gates. Using a scanning superconducting quantum interference device, here we image the de Haas–van Alphen quantum oscillations in a model system, the Bernal-stacked trilayer graphene with dual gates, which shows several highly tunable bands 2 – 4 . By resolving thermodynamic quantum oscillations spanning more than 100 Landau levels in low magnetic fields, we reconstruct the band structure and its evolution with the displacement field with excellent precision and nanoscale spatial resolution. Moreover, by developing Landau-level interferometry, we show shear-strain-induced pseudomagnetic fields and map their spatial dependence. In contrast to artificially induced large strain, which leads to pseudomagnetic fields of hundreds of tesla 5 – 7 , we detect naturally occurring pseudomagnetic fields as low as 1 mT corresponding to graphene twisting by 1 millidegree, two orders of magnitude lower than the typical angle disorder in twisted bilayer graphene 8 – 11 . This ability to resolve the local band structure and strain at the nanoscale level enables the characterization and use of tunable band engineering in practical van der Waals devices. Imaging of quantum oscillations in Bernal-stacked trilayer graphene with dual gates enables high-precision reconstruction of the highly tunable bands and reveals naturally occurring pseudomagnetic fields as low as 1 mT corresponding to graphene twisting by 1 millidegree.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37993718</pmid><doi>10.1038/s41586-023-06763-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7638-902X</orcidid><orcidid>https://orcid.org/0000-0002-8200-4974</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-2164-5839</orcidid><orcidid>https://orcid.org/0000-0001-9773-7719</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2023-12, Vol.624 (7991), p.275-281
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10719110
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 639/301/119/995
639/925/918/1052
Active layer
Amines
Band structure of solids
Cytoskeleton
De Haas-Van Alphen effect
Diagnostic Imaging
Electronics
Electrons
Energy bands
Graphene
Graphite
Humanities and Social Sciences
Insulating layers
Insulation
Interferometry
Magnetic fields
multidisciplinary
Oscillations
Science
Science (multidisciplinary)
Spatial discrimination
Spatial resolution
Superconducting quantum interference devices
Symmetry
Two dimensional materials
title Imaging quantum oscillations and millitesla pseudomagnetic fields in graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20quantum%20oscillations%20and%20millitesla%20pseudomagnetic%20fields%20in%20graphene&rft.jtitle=Nature%20(London)&rft.au=Zhou,%20Haibiao&rft.date=2023-12-14&rft.volume=624&rft.issue=7991&rft.spage=275&rft.epage=281&rft.pages=275-281&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-06763-5&rft_dat=%3Cproquest_pubme%3E2892946437%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902714753&rft_id=info:pmid/37993718&rfr_iscdi=true