A Bayesian noisy logic model for inference of transcription factor activity from single cell and bulk transcriptomic data

Abstract The advent of high-throughput sequencing has made it possible to measure the expression of genes at relatively low cost. However, direct measurement of regulatory mechanisms, such as transcription factor (TF) activity is still not readily feasible in a high-throughput manner. Consequently,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NAR Genomics and Bioinformatics 2023-12, Vol.5 (4), p.lqad106
Hauptverfasser: Arriojas, Argenis, Patalano, Susan, Macoska, Jill, Zarringhalam, Kourosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page lqad106
container_title NAR Genomics and Bioinformatics
container_volume 5
creator Arriojas, Argenis
Patalano, Susan
Macoska, Jill
Zarringhalam, Kourosh
description Abstract The advent of high-throughput sequencing has made it possible to measure the expression of genes at relatively low cost. However, direct measurement of regulatory mechanisms, such as transcription factor (TF) activity is still not readily feasible in a high-throughput manner. Consequently, there is a need for computational approaches that can reliably estimate regulator activity from observable gene expression data. In this work, we present a noisy Boolean logic Bayesian model for TF activity inference from differential gene expression data and causal graphs. Our approach provides a flexible framework to incorporate biologically motivated TF–gene regulation logic models. Using simulations and controlled over-expression experiments in cell cultures, we demonstrate that our method can accurately identify TF activity. Moreover, we apply our method to bulk and single cell transcriptomics measurements to investigate transcriptional regulation of fibroblast phenotypic plasticity. Finally, to facilitate usage, we provide user-friendly software packages and a web-interface to query TF activity from user input differential gene expression data: https://umbibio.math.umb.edu/nlbayes/.
doi_str_mv 10.1093/nargab/lqad106
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10716740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782671247</galeid><oup_id>10.1093/nargab/lqad106</oup_id><sourcerecordid>A782671247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-5864241078d2f80816e46586d574984287a5c7908d48002fc5fe2a68c04e97703</originalsourceid><addsrcrecordid>eNqFUUFvFCEYnTSatqm99mg46mFbYJgBTmZt1Jo08WLPhIWPEWVgCzNN5t-Xza51ezIk8OXjvcf3eE1zRfA1wbK9iToPenMTHrUluD9pzmnfkpWkvXhzVJ81l6X8xhjTjnUMk9PmrBVYshbL82ZZo896geJ1RDH5sqCQBm_QmCwE5FJGPjrIEA2g5NCUdSwm--3kU0ROm6ki6u6f_LQgl9OIio9DAGQgBKSjRZs5_DnipbGqWz3pd81bp0OBy8N50Tx8_fLz9m51_-Pb99v1_cowSadVJ3pGGcFcWOoEFqQH1tem7TiTglHBdWe4xMIyUS060zmguhcGM5Cc4_ai-bTX3c6bEayBWIcJapv9qPOikvbq9U30v9SQnlR9k_Sc7RQ-HBRyepyhTGr0ZedPR0hzUVRiKjvCO1mh13vooAOo-nWpSpq6LFTfKYLztb_mgvacUMb_EUxOpWRwL4MRrHYhq33I6hByJbw_tvMC_xtpBXzcA9K8_Z_YM34CtCs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902951759</pqid></control><display><type>article</type><title>A Bayesian noisy logic model for inference of transcription factor activity from single cell and bulk transcriptomic data</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Arriojas, Argenis ; Patalano, Susan ; Macoska, Jill ; Zarringhalam, Kourosh</creator><creatorcontrib>Arriojas, Argenis ; Patalano, Susan ; Macoska, Jill ; Zarringhalam, Kourosh</creatorcontrib><description>Abstract The advent of high-throughput sequencing has made it possible to measure the expression of genes at relatively low cost. However, direct measurement of regulatory mechanisms, such as transcription factor (TF) activity is still not readily feasible in a high-throughput manner. Consequently, there is a need for computational approaches that can reliably estimate regulator activity from observable gene expression data. In this work, we present a noisy Boolean logic Bayesian model for TF activity inference from differential gene expression data and causal graphs. Our approach provides a flexible framework to incorporate biologically motivated TF–gene regulation logic models. Using simulations and controlled over-expression experiments in cell cultures, we demonstrate that our method can accurately identify TF activity. Moreover, we apply our method to bulk and single cell transcriptomics measurements to investigate transcriptional regulation of fibroblast phenotypic plasticity. Finally, to facilitate usage, we provide user-friendly software packages and a web-interface to query TF activity from user input differential gene expression data: https://umbibio.math.umb.edu/nlbayes/.</description><identifier>ISSN: 2631-9268</identifier><identifier>EISSN: 2631-9268</identifier><identifier>DOI: 10.1093/nargab/lqad106</identifier><identifier>PMID: 38094309</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Analysis ; Gene expression ; Genes ; Methods ; Simulation methods</subject><ispartof>NAR Genomics and Bioinformatics, 2023-12, Vol.5 (4), p.lqad106</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.</rights><rights>COPYRIGHT 2023 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-5864241078d2f80816e46586d574984287a5c7908d48002fc5fe2a68c04e97703</citedby><cites>FETCH-LOGICAL-c492t-5864241078d2f80816e46586d574984287a5c7908d48002fc5fe2a68c04e97703</cites><orcidid>0000-0002-0479-1300 ; 0000-0001-8471-2221 ; 0000-0003-4265-5083 ; 0000-0002-5108-8108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716740/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716740/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38094309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arriojas, Argenis</creatorcontrib><creatorcontrib>Patalano, Susan</creatorcontrib><creatorcontrib>Macoska, Jill</creatorcontrib><creatorcontrib>Zarringhalam, Kourosh</creatorcontrib><title>A Bayesian noisy logic model for inference of transcription factor activity from single cell and bulk transcriptomic data</title><title>NAR Genomics and Bioinformatics</title><addtitle>NAR Genom Bioinform</addtitle><description>Abstract The advent of high-throughput sequencing has made it possible to measure the expression of genes at relatively low cost. However, direct measurement of regulatory mechanisms, such as transcription factor (TF) activity is still not readily feasible in a high-throughput manner. Consequently, there is a need for computational approaches that can reliably estimate regulator activity from observable gene expression data. In this work, we present a noisy Boolean logic Bayesian model for TF activity inference from differential gene expression data and causal graphs. Our approach provides a flexible framework to incorporate biologically motivated TF–gene regulation logic models. Using simulations and controlled over-expression experiments in cell cultures, we demonstrate that our method can accurately identify TF activity. Moreover, we apply our method to bulk and single cell transcriptomics measurements to investigate transcriptional regulation of fibroblast phenotypic plasticity. Finally, to facilitate usage, we provide user-friendly software packages and a web-interface to query TF activity from user input differential gene expression data: https://umbibio.math.umb.edu/nlbayes/.</description><subject>Analysis</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Methods</subject><subject>Simulation methods</subject><issn>2631-9268</issn><issn>2631-9268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFUUFvFCEYnTSatqm99mg46mFbYJgBTmZt1Jo08WLPhIWPEWVgCzNN5t-Xza51ezIk8OXjvcf3eE1zRfA1wbK9iToPenMTHrUluD9pzmnfkpWkvXhzVJ81l6X8xhjTjnUMk9PmrBVYshbL82ZZo896geJ1RDH5sqCQBm_QmCwE5FJGPjrIEA2g5NCUdSwm--3kU0ROm6ki6u6f_LQgl9OIio9DAGQgBKSjRZs5_DnipbGqWz3pd81bp0OBy8N50Tx8_fLz9m51_-Pb99v1_cowSadVJ3pGGcFcWOoEFqQH1tem7TiTglHBdWe4xMIyUS060zmguhcGM5Cc4_ai-bTX3c6bEayBWIcJapv9qPOikvbq9U30v9SQnlR9k_Sc7RQ-HBRyepyhTGr0ZedPR0hzUVRiKjvCO1mh13vooAOo-nWpSpq6LFTfKYLztb_mgvacUMb_EUxOpWRwL4MRrHYhq33I6hByJbw_tvMC_xtpBXzcA9K8_Z_YM34CtCs</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Arriojas, Argenis</creator><creator>Patalano, Susan</creator><creator>Macoska, Jill</creator><creator>Zarringhalam, Kourosh</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0479-1300</orcidid><orcidid>https://orcid.org/0000-0001-8471-2221</orcidid><orcidid>https://orcid.org/0000-0003-4265-5083</orcidid><orcidid>https://orcid.org/0000-0002-5108-8108</orcidid></search><sort><creationdate>20231201</creationdate><title>A Bayesian noisy logic model for inference of transcription factor activity from single cell and bulk transcriptomic data</title><author>Arriojas, Argenis ; Patalano, Susan ; Macoska, Jill ; Zarringhalam, Kourosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-5864241078d2f80816e46586d574984287a5c7908d48002fc5fe2a68c04e97703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Methods</topic><topic>Simulation methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arriojas, Argenis</creatorcontrib><creatorcontrib>Patalano, Susan</creatorcontrib><creatorcontrib>Macoska, Jill</creatorcontrib><creatorcontrib>Zarringhalam, Kourosh</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NAR Genomics and Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arriojas, Argenis</au><au>Patalano, Susan</au><au>Macoska, Jill</au><au>Zarringhalam, Kourosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian noisy logic model for inference of transcription factor activity from single cell and bulk transcriptomic data</atitle><jtitle>NAR Genomics and Bioinformatics</jtitle><addtitle>NAR Genom Bioinform</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>5</volume><issue>4</issue><spage>lqad106</spage><pages>lqad106-</pages><issn>2631-9268</issn><eissn>2631-9268</eissn><abstract>Abstract The advent of high-throughput sequencing has made it possible to measure the expression of genes at relatively low cost. However, direct measurement of regulatory mechanisms, such as transcription factor (TF) activity is still not readily feasible in a high-throughput manner. Consequently, there is a need for computational approaches that can reliably estimate regulator activity from observable gene expression data. In this work, we present a noisy Boolean logic Bayesian model for TF activity inference from differential gene expression data and causal graphs. Our approach provides a flexible framework to incorporate biologically motivated TF–gene regulation logic models. Using simulations and controlled over-expression experiments in cell cultures, we demonstrate that our method can accurately identify TF activity. Moreover, we apply our method to bulk and single cell transcriptomics measurements to investigate transcriptional regulation of fibroblast phenotypic plasticity. Finally, to facilitate usage, we provide user-friendly software packages and a web-interface to query TF activity from user input differential gene expression data: https://umbibio.math.umb.edu/nlbayes/.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38094309</pmid><doi>10.1093/nargab/lqad106</doi><orcidid>https://orcid.org/0000-0002-0479-1300</orcidid><orcidid>https://orcid.org/0000-0001-8471-2221</orcidid><orcidid>https://orcid.org/0000-0003-4265-5083</orcidid><orcidid>https://orcid.org/0000-0002-5108-8108</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2631-9268
ispartof NAR Genomics and Bioinformatics, 2023-12, Vol.5 (4), p.lqad106
issn 2631-9268
2631-9268
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10716740
source DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central
subjects Analysis
Gene expression
Genes
Methods
Simulation methods
title A Bayesian noisy logic model for inference of transcription factor activity from single cell and bulk transcriptomic data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20noisy%20logic%20model%20for%20inference%20of%20transcription%20factor%20activity%20from%20single%20cell%20and%20bulk%20transcriptomic%20data&rft.jtitle=NAR%20Genomics%20and%20Bioinformatics&rft.au=Arriojas,%20Argenis&rft.date=2023-12-01&rft.volume=5&rft.issue=4&rft.spage=lqad106&rft.pages=lqad106-&rft.issn=2631-9268&rft.eissn=2631-9268&rft_id=info:doi/10.1093/nargab/lqad106&rft_dat=%3Cgale_pubme%3EA782671247%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902951759&rft_id=info:pmid/38094309&rft_galeid=A782671247&rft_oup_id=10.1093/nargab/lqad106&rfr_iscdi=true