Improved detection of aberrant splicing with FRASER 2.0 and the intron Jaccard index

Detection of aberrantly spliced genes is an important step in RNA-seq-based rare-disease diagnostics. We recently developed FRASER, a denoising autoencoder-based method that outperformed alternative methods of detecting aberrant splicing. However, because FRASER’s three splice metrics are partially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics 2023-12, Vol.110 (12), p.2056-2067
Hauptverfasser: Scheller, Ines F., Lutz, Karoline, Mertes, Christian, Yépez, Vicente A., Gagneur, Julien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2067
container_issue 12
container_start_page 2056
container_title American journal of human genetics
container_volume 110
creator Scheller, Ines F.
Lutz, Karoline
Mertes, Christian
Yépez, Vicente A.
Gagneur, Julien
description Detection of aberrantly spliced genes is an important step in RNA-seq-based rare-disease diagnostics. We recently developed FRASER, a denoising autoencoder-based method that outperformed alternative methods of detecting aberrant splicing. However, because FRASER’s three splice metrics are partially redundant and tend to be sensitive to sequencing depth, we introduce here a more robust intron-excision metric, the intron Jaccard index, that combines the alternative donor, alternative acceptor, and intron-retention signal into a single value. Moreover, we optimized model parameters and filter cutoffs by using candidate rare-splice-disrupting variants as independent evidence. On 16,213 GTEx samples, our improved algorithm, FRASER 2.0, called typically 10 times fewer splicing outliers while increasing the proportion of candidate rare-splice-disrupting variants by 10-fold and substantially decreasing the effect of sequencing depth on the number of reported outliers. To lower the multiple-testing correction burden, we introduce an option to select the genes to be tested for each sample instead of a transcriptome-wide approach. This option can be particularly useful when prior information, such as candidate variants or genes, is available. Application on 303 rare-disease samples confirmed the relative reduction in the number of outlier calls for a slight loss of sensitivity; FRASER 2.0 recovered 22 out of 26 previously identified pathogenic splicing cases with default cutoffs and 24 when multiple-testing correction was limited to OMIM genes containing rare variants. Altogether, these methodological improvements contribute to more effective RNA-seq-based rare diagnostics by drastically reducing the amount of splicing outlier calls per sample at minimal loss of sensitivity. [Display omitted]
doi_str_mv 10.1016/j.ajhg.2023.10.014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10716352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929723003671</els_id><sourcerecordid>2893841675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-b0c1247c9f8ddf5ae26436dc6a5d4ac78bcc826854683a90c14bad1159bfa4ec3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvLF-CAfOSSMP4bR0JCVdVCUSWktpwtx57sepVNFju7wLfHqy0VvfQ0mvF7b0b-EfKOQc2A6Y_r2q1Xy5oDF2VQA5MvyIIp0VRag3pJFgDAq5a3zQl5k_MagDED4jU5EQZAGwMLcn-92aZpj4EGnNHPcRrp1FPXYUpunGneDtHHcUl_xXlFr27P7y5vKa-BujHQeYU0jnMqnm_Oe5dCaQP-PiOvejdkfPtQT8mPq8v7i6_Vzfcv1xfnN5WXSs9VB55x2fi2NyH0yiHXUujgtVNBOt-YznvDtVFSG-HaopadC4yptuudRC9Oyedj7nbXbTB4LLe4wW5T3Lj0x04u2qcvY1zZ5bS3DBqmheIl4cNDQpp-7jDPdhOzx2FwI067bLlphZFMN6pI-VHq05Rzwv5xDwN74GHX9sDDHngcZoVHMb3__8JHyz8ARfDpKMDyT_uIyWYfcfQYYio4bJjic_l_Aei2nI8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893841675</pqid></control><display><type>article</type><title>Improved detection of aberrant splicing with FRASER 2.0 and the intron Jaccard index</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Scheller, Ines F. ; Lutz, Karoline ; Mertes, Christian ; Yépez, Vicente A. ; Gagneur, Julien</creator><creatorcontrib>Scheller, Ines F. ; Lutz, Karoline ; Mertes, Christian ; Yépez, Vicente A. ; Gagneur, Julien</creatorcontrib><description>Detection of aberrantly spliced genes is an important step in RNA-seq-based rare-disease diagnostics. We recently developed FRASER, a denoising autoencoder-based method that outperformed alternative methods of detecting aberrant splicing. However, because FRASER’s three splice metrics are partially redundant and tend to be sensitive to sequencing depth, we introduce here a more robust intron-excision metric, the intron Jaccard index, that combines the alternative donor, alternative acceptor, and intron-retention signal into a single value. Moreover, we optimized model parameters and filter cutoffs by using candidate rare-splice-disrupting variants as independent evidence. On 16,213 GTEx samples, our improved algorithm, FRASER 2.0, called typically 10 times fewer splicing outliers while increasing the proportion of candidate rare-splice-disrupting variants by 10-fold and substantially decreasing the effect of sequencing depth on the number of reported outliers. To lower the multiple-testing correction burden, we introduce an option to select the genes to be tested for each sample instead of a transcriptome-wide approach. This option can be particularly useful when prior information, such as candidate variants or genes, is available. Application on 303 rare-disease samples confirmed the relative reduction in the number of outlier calls for a slight loss of sensitivity; FRASER 2.0 recovered 22 out of 26 previously identified pathogenic splicing cases with default cutoffs and 24 when multiple-testing correction was limited to OMIM genes containing rare variants. Altogether, these methodological improvements contribute to more effective RNA-seq-based rare diagnostics by drastically reducing the amount of splicing outlier calls per sample at minimal loss of sensitivity. [Display omitted]</description><identifier>ISSN: 0002-9297</identifier><identifier>ISSN: 1537-6605</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2023.10.014</identifier><identifier>PMID: 38006880</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aberrant splicing ; Algorithms ; Alternative Splicing - genetics ; Humans ; Introns - genetics ; outlier detection ; rare disease ; rare disease diagnostics ; rare variant ; RNA Splicing - genetics ; RNA-Seq</subject><ispartof>American journal of human genetics, 2023-12, Vol.110 (12), p.2056-2067</ispartof><rights>2023 American Society of Human Genetics</rights><rights>Copyright © 2023 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 American Society of Human Genetics. 2023 American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-b0c1247c9f8ddf5ae26436dc6a5d4ac78bcc826854683a90c14bad1159bfa4ec3</citedby><cites>FETCH-LOGICAL-c456t-b0c1247c9f8ddf5ae26436dc6a5d4ac78bcc826854683a90c14bad1159bfa4ec3</cites><orcidid>0000-0003-4533-7857 ; 0000-0002-8924-8365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716352/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ajhg.2023.10.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,3537,27905,27906,45976,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38006880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scheller, Ines F.</creatorcontrib><creatorcontrib>Lutz, Karoline</creatorcontrib><creatorcontrib>Mertes, Christian</creatorcontrib><creatorcontrib>Yépez, Vicente A.</creatorcontrib><creatorcontrib>Gagneur, Julien</creatorcontrib><title>Improved detection of aberrant splicing with FRASER 2.0 and the intron Jaccard index</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Detection of aberrantly spliced genes is an important step in RNA-seq-based rare-disease diagnostics. We recently developed FRASER, a denoising autoencoder-based method that outperformed alternative methods of detecting aberrant splicing. However, because FRASER’s three splice metrics are partially redundant and tend to be sensitive to sequencing depth, we introduce here a more robust intron-excision metric, the intron Jaccard index, that combines the alternative donor, alternative acceptor, and intron-retention signal into a single value. Moreover, we optimized model parameters and filter cutoffs by using candidate rare-splice-disrupting variants as independent evidence. On 16,213 GTEx samples, our improved algorithm, FRASER 2.0, called typically 10 times fewer splicing outliers while increasing the proportion of candidate rare-splice-disrupting variants by 10-fold and substantially decreasing the effect of sequencing depth on the number of reported outliers. To lower the multiple-testing correction burden, we introduce an option to select the genes to be tested for each sample instead of a transcriptome-wide approach. This option can be particularly useful when prior information, such as candidate variants or genes, is available. Application on 303 rare-disease samples confirmed the relative reduction in the number of outlier calls for a slight loss of sensitivity; FRASER 2.0 recovered 22 out of 26 previously identified pathogenic splicing cases with default cutoffs and 24 when multiple-testing correction was limited to OMIM genes containing rare variants. Altogether, these methodological improvements contribute to more effective RNA-seq-based rare diagnostics by drastically reducing the amount of splicing outlier calls per sample at minimal loss of sensitivity. [Display omitted]</description><subject>Aberrant splicing</subject><subject>Algorithms</subject><subject>Alternative Splicing - genetics</subject><subject>Humans</subject><subject>Introns - genetics</subject><subject>outlier detection</subject><subject>rare disease</subject><subject>rare disease diagnostics</subject><subject>rare variant</subject><subject>RNA Splicing - genetics</subject><subject>RNA-Seq</subject><issn>0002-9297</issn><issn>1537-6605</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EokvLF-CAfOSSMP4bR0JCVdVCUSWktpwtx57sepVNFju7wLfHqy0VvfQ0mvF7b0b-EfKOQc2A6Y_r2q1Xy5oDF2VQA5MvyIIp0VRag3pJFgDAq5a3zQl5k_MagDED4jU5EQZAGwMLcn-92aZpj4EGnNHPcRrp1FPXYUpunGneDtHHcUl_xXlFr27P7y5vKa-BujHQeYU0jnMqnm_Oe5dCaQP-PiOvejdkfPtQT8mPq8v7i6_Vzfcv1xfnN5WXSs9VB55x2fi2NyH0yiHXUujgtVNBOt-YznvDtVFSG-HaopadC4yptuudRC9Oyedj7nbXbTB4LLe4wW5T3Lj0x04u2qcvY1zZ5bS3DBqmheIl4cNDQpp-7jDPdhOzx2FwI067bLlphZFMN6pI-VHq05Rzwv5xDwN74GHX9sDDHngcZoVHMb3__8JHyz8ARfDpKMDyT_uIyWYfcfQYYio4bJjic_l_Aei2nI8</recordid><startdate>20231207</startdate><enddate>20231207</enddate><creator>Scheller, Ines F.</creator><creator>Lutz, Karoline</creator><creator>Mertes, Christian</creator><creator>Yépez, Vicente A.</creator><creator>Gagneur, Julien</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4533-7857</orcidid><orcidid>https://orcid.org/0000-0002-8924-8365</orcidid></search><sort><creationdate>20231207</creationdate><title>Improved detection of aberrant splicing with FRASER 2.0 and the intron Jaccard index</title><author>Scheller, Ines F. ; Lutz, Karoline ; Mertes, Christian ; Yépez, Vicente A. ; Gagneur, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-b0c1247c9f8ddf5ae26436dc6a5d4ac78bcc826854683a90c14bad1159bfa4ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aberrant splicing</topic><topic>Algorithms</topic><topic>Alternative Splicing - genetics</topic><topic>Humans</topic><topic>Introns - genetics</topic><topic>outlier detection</topic><topic>rare disease</topic><topic>rare disease diagnostics</topic><topic>rare variant</topic><topic>RNA Splicing - genetics</topic><topic>RNA-Seq</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheller, Ines F.</creatorcontrib><creatorcontrib>Lutz, Karoline</creatorcontrib><creatorcontrib>Mertes, Christian</creatorcontrib><creatorcontrib>Yépez, Vicente A.</creatorcontrib><creatorcontrib>Gagneur, Julien</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheller, Ines F.</au><au>Lutz, Karoline</au><au>Mertes, Christian</au><au>Yépez, Vicente A.</au><au>Gagneur, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved detection of aberrant splicing with FRASER 2.0 and the intron Jaccard index</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2023-12-07</date><risdate>2023</risdate><volume>110</volume><issue>12</issue><spage>2056</spage><epage>2067</epage><pages>2056-2067</pages><issn>0002-9297</issn><issn>1537-6605</issn><eissn>1537-6605</eissn><abstract>Detection of aberrantly spliced genes is an important step in RNA-seq-based rare-disease diagnostics. We recently developed FRASER, a denoising autoencoder-based method that outperformed alternative methods of detecting aberrant splicing. However, because FRASER’s three splice metrics are partially redundant and tend to be sensitive to sequencing depth, we introduce here a more robust intron-excision metric, the intron Jaccard index, that combines the alternative donor, alternative acceptor, and intron-retention signal into a single value. Moreover, we optimized model parameters and filter cutoffs by using candidate rare-splice-disrupting variants as independent evidence. On 16,213 GTEx samples, our improved algorithm, FRASER 2.0, called typically 10 times fewer splicing outliers while increasing the proportion of candidate rare-splice-disrupting variants by 10-fold and substantially decreasing the effect of sequencing depth on the number of reported outliers. To lower the multiple-testing correction burden, we introduce an option to select the genes to be tested for each sample instead of a transcriptome-wide approach. This option can be particularly useful when prior information, such as candidate variants or genes, is available. Application on 303 rare-disease samples confirmed the relative reduction in the number of outlier calls for a slight loss of sensitivity; FRASER 2.0 recovered 22 out of 26 previously identified pathogenic splicing cases with default cutoffs and 24 when multiple-testing correction was limited to OMIM genes containing rare variants. Altogether, these methodological improvements contribute to more effective RNA-seq-based rare diagnostics by drastically reducing the amount of splicing outlier calls per sample at minimal loss of sensitivity. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38006880</pmid><doi>10.1016/j.ajhg.2023.10.014</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4533-7857</orcidid><orcidid>https://orcid.org/0000-0002-8924-8365</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9297
ispartof American journal of human genetics, 2023-12, Vol.110 (12), p.2056-2067
issn 0002-9297
1537-6605
1537-6605
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10716352
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Aberrant splicing
Algorithms
Alternative Splicing - genetics
Humans
Introns - genetics
outlier detection
rare disease
rare disease diagnostics
rare variant
RNA Splicing - genetics
RNA-Seq
title Improved detection of aberrant splicing with FRASER 2.0 and the intron Jaccard index
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20detection%20of%20aberrant%20splicing%20with%20FRASER%202.0%20and%20the%20intron%20Jaccard%20index&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Scheller,%20Ines%20F.&rft.date=2023-12-07&rft.volume=110&rft.issue=12&rft.spage=2056&rft.epage=2067&rft.pages=2056-2067&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2023.10.014&rft_dat=%3Cproquest_pubme%3E2893841675%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893841675&rft_id=info:pmid/38006880&rft_els_id=S0002929723003671&rfr_iscdi=true