Using machine learning to predict adverse events in acute coronary syndrome: A retrospective study

Background Up to 30% of patients with acute coronary syndrome (ACS) die from adverse events, mainly renal failure and myocardial infarction (MI). Accurate prediction of adverse events is therefore essential to improve patient prognosis. Hypothesis Machine learning (ML) methods can accurately identif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cardiology (Mahwah, N.J.) N.J.), 2023-12, Vol.46 (12), p.1594-1602
Hauptverfasser: Song, Long, Li, Yuan, Nie, Shanshan, Feng, Zeying, Liu, Yaxin, Ding, Fangfang, Gong, Liying, Liu, Liming, Yang, Guoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!