The proofreading exonuclease of leading-strand DNA polymerase epsilon prevents replication fork collapse at broken template strands
Abstract Leading-strand DNA replication by polymerase epsilon (Polϵ) across single-strand breaks (SSBs) causes single-ended double-strand breaks (seDSBs), which are repaired via homology-directed repair (HDR) and suppressed by fork reversal (FR). Although previous studies identified many molecules r...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2023-12, Vol.51 (22), p.12288-12302 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12302 |
---|---|
container_issue | 22 |
container_start_page | 12288 |
container_title | Nucleic acids research |
container_volume | 51 |
creator | Ahmad, Tasnim Kawasumi, Ryotaro Taniguchi, Tomoya Abe, Takuya Terada, Kazuhiro Tsuda, Masataka Shimizu, Naoto Tsurimoto, Toshiki Takeda, Shunichi Hirota, Kouji |
description | Abstract
Leading-strand DNA replication by polymerase epsilon (Polϵ) across single-strand breaks (SSBs) causes single-ended double-strand breaks (seDSBs), which are repaired via homology-directed repair (HDR) and suppressed by fork reversal (FR). Although previous studies identified many molecules required for hydroxyurea-induced FR, FR at seDSBs is poorly understood. Here, we identified molecules that specifically mediate FR at seDSBs. Because FR at seDSBs requires poly(ADP ribose)polymerase 1 (PARP1), we hypothesized that seDSB/FR-associated molecules would increase tolerance to camptothecin (CPT) but not the PARP inhibitor olaparib, even though both anti-cancer agents generate seDSBs. Indeed, we uncovered that Polϵ exonuclease and CTF18, a Polϵ cofactor, increased tolerance to CPT but not olaparib. To explore potential functional interactions between Polϵ exonuclease, CTF18, and PARP1, we created exonuclease-deficient POLE1exo−/−, CTF18−/−, PARP1−/−, CTF18−/−/POLE1exo−/−, PARP1−/−/POLE1exo−/−, and CTF18−/−/PARP1−/− cells. Epistasis analysis indicated that Polϵ exonuclease and CTF18 were interdependent and required PARP1 for CPT tolerance. Remarkably, POLE1exo−/− and HDR-deficient BRCA1−/− cells exhibited similar CPT sensitivity. Moreover, combining POLE1exo−/− with BRCA1−/− mutations synergistically increased CPT sensitivity. In conclusion, the newly identified PARP1-CTF18-Polϵ exonuclease axis and HDR act independently to prevent fork collapse at seDSBs. Olaparib inhibits this axis, explaining the pronounced cytotoxic effects of olaparib on HDR-deficient cells.
Graphical Abstract
Graphical Abstract |
doi_str_mv | 10.1093/nar/gkad999 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10711444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkad999</oup_id><sourcerecordid>2889245166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-5bf6ddaa6f339dcfcb793b021ef39c1cda0c8b625d847b488229d98accc145c93</originalsourceid><addsrcrecordid>eNp9kc9rFTEQx4Mo9lk9eZecRJC1ySa7LzlJqb8Kpb3Uc8gmk9f1ZZOY7BZ77j9uyj6LXjwNzHz4zAxfhF5T8oESyU6Czie7vbZSyidoQ1nfNlz27VO0IYx0DSVcHKEXpfwghHLa8efoiG0l51KIDbq_vgGccowug7Zj2GH4FcNiPOgCODrs13ZT5qyDxZ8uT3GK_m6C_ABAKqOPoRrgFsJccIbkR6PnsTZdzHtsovc6VVTPeMhxDwHPMCWvZ8Crs7xEz5z2BV4d6jH6_uXz9dm35uLq6_nZ6UVjOGVz0w2ut1br3jEmrXFm2Eo2kJaCY9JQYzUxYujbzgq-HbgQbSutFNoYQ3lnJDtGH1dvWoYJrKkHZ-1VyuOk852KelT_TsJ4o3bxVlGypZRzXg3vDoYcfy5QZjWNxUD9MEBcimqFkC3vaN9X9P2KmhxLyeAe91CiHnJTNTd1yK3Sb_4-7ZH9E1QF3q5AXNJ_Tb8BIlOnew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889245166</pqid></control><display><type>article</type><title>The proofreading exonuclease of leading-strand DNA polymerase epsilon prevents replication fork collapse at broken template strands</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ahmad, Tasnim ; Kawasumi, Ryotaro ; Taniguchi, Tomoya ; Abe, Takuya ; Terada, Kazuhiro ; Tsuda, Masataka ; Shimizu, Naoto ; Tsurimoto, Toshiki ; Takeda, Shunichi ; Hirota, Kouji</creator><creatorcontrib>Ahmad, Tasnim ; Kawasumi, Ryotaro ; Taniguchi, Tomoya ; Abe, Takuya ; Terada, Kazuhiro ; Tsuda, Masataka ; Shimizu, Naoto ; Tsurimoto, Toshiki ; Takeda, Shunichi ; Hirota, Kouji</creatorcontrib><description>Abstract
Leading-strand DNA replication by polymerase epsilon (Polϵ) across single-strand breaks (SSBs) causes single-ended double-strand breaks (seDSBs), which are repaired via homology-directed repair (HDR) and suppressed by fork reversal (FR). Although previous studies identified many molecules required for hydroxyurea-induced FR, FR at seDSBs is poorly understood. Here, we identified molecules that specifically mediate FR at seDSBs. Because FR at seDSBs requires poly(ADP ribose)polymerase 1 (PARP1), we hypothesized that seDSB/FR-associated molecules would increase tolerance to camptothecin (CPT) but not the PARP inhibitor olaparib, even though both anti-cancer agents generate seDSBs. Indeed, we uncovered that Polϵ exonuclease and CTF18, a Polϵ cofactor, increased tolerance to CPT but not olaparib. To explore potential functional interactions between Polϵ exonuclease, CTF18, and PARP1, we created exonuclease-deficient POLE1exo−/−, CTF18−/−, PARP1−/−, CTF18−/−/POLE1exo−/−, PARP1−/−/POLE1exo−/−, and CTF18−/−/PARP1−/− cells. Epistasis analysis indicated that Polϵ exonuclease and CTF18 were interdependent and required PARP1 for CPT tolerance. Remarkably, POLE1exo−/− and HDR-deficient BRCA1−/− cells exhibited similar CPT sensitivity. Moreover, combining POLE1exo−/− with BRCA1−/− mutations synergistically increased CPT sensitivity. In conclusion, the newly identified PARP1-CTF18-Polϵ exonuclease axis and HDR act independently to prevent fork collapse at seDSBs. Olaparib inhibits this axis, explaining the pronounced cytotoxic effects of olaparib on HDR-deficient cells.
Graphical Abstract
Graphical Abstract</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkad999</identifier><identifier>PMID: 37944988</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Antineoplastic Agents ; DNA Polymerase II - metabolism ; DNA Replication ; Genome Integrity, Repair and ; Poly (ADP-Ribose) Polymerase-1 - genetics ; Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</subject><ispartof>Nucleic acids research, 2023-12, Vol.51 (22), p.12288-12302</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-5bf6ddaa6f339dcfcb793b021ef39c1cda0c8b625d847b488229d98accc145c93</citedby><cites>FETCH-LOGICAL-c413t-5bf6ddaa6f339dcfcb793b021ef39c1cda0c8b625d847b488229d98accc145c93</cites><orcidid>0000-0002-1267-3777 ; 0000-0003-1676-979X ; 0000-0003-0494-3690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10711444/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10711444/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37944988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmad, Tasnim</creatorcontrib><creatorcontrib>Kawasumi, Ryotaro</creatorcontrib><creatorcontrib>Taniguchi, Tomoya</creatorcontrib><creatorcontrib>Abe, Takuya</creatorcontrib><creatorcontrib>Terada, Kazuhiro</creatorcontrib><creatorcontrib>Tsuda, Masataka</creatorcontrib><creatorcontrib>Shimizu, Naoto</creatorcontrib><creatorcontrib>Tsurimoto, Toshiki</creatorcontrib><creatorcontrib>Takeda, Shunichi</creatorcontrib><creatorcontrib>Hirota, Kouji</creatorcontrib><title>The proofreading exonuclease of leading-strand DNA polymerase epsilon prevents replication fork collapse at broken template strands</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
Leading-strand DNA replication by polymerase epsilon (Polϵ) across single-strand breaks (SSBs) causes single-ended double-strand breaks (seDSBs), which are repaired via homology-directed repair (HDR) and suppressed by fork reversal (FR). Although previous studies identified many molecules required for hydroxyurea-induced FR, FR at seDSBs is poorly understood. Here, we identified molecules that specifically mediate FR at seDSBs. Because FR at seDSBs requires poly(ADP ribose)polymerase 1 (PARP1), we hypothesized that seDSB/FR-associated molecules would increase tolerance to camptothecin (CPT) but not the PARP inhibitor olaparib, even though both anti-cancer agents generate seDSBs. Indeed, we uncovered that Polϵ exonuclease and CTF18, a Polϵ cofactor, increased tolerance to CPT but not olaparib. To explore potential functional interactions between Polϵ exonuclease, CTF18, and PARP1, we created exonuclease-deficient POLE1exo−/−, CTF18−/−, PARP1−/−, CTF18−/−/POLE1exo−/−, PARP1−/−/POLE1exo−/−, and CTF18−/−/PARP1−/− cells. Epistasis analysis indicated that Polϵ exonuclease and CTF18 were interdependent and required PARP1 for CPT tolerance. Remarkably, POLE1exo−/− and HDR-deficient BRCA1−/− cells exhibited similar CPT sensitivity. Moreover, combining POLE1exo−/− with BRCA1−/− mutations synergistically increased CPT sensitivity. In conclusion, the newly identified PARP1-CTF18-Polϵ exonuclease axis and HDR act independently to prevent fork collapse at seDSBs. Olaparib inhibits this axis, explaining the pronounced cytotoxic effects of olaparib on HDR-deficient cells.
Graphical Abstract
Graphical Abstract</description><subject>Antineoplastic Agents</subject><subject>DNA Polymerase II - metabolism</subject><subject>DNA Replication</subject><subject>Genome Integrity, Repair and</subject><subject>Poly (ADP-Ribose) Polymerase-1 - genetics</subject><subject>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc9rFTEQx4Mo9lk9eZecRJC1ySa7LzlJqb8Kpb3Uc8gmk9f1ZZOY7BZ77j9uyj6LXjwNzHz4zAxfhF5T8oESyU6Czie7vbZSyidoQ1nfNlz27VO0IYx0DSVcHKEXpfwghHLa8efoiG0l51KIDbq_vgGccowug7Zj2GH4FcNiPOgCODrs13ZT5qyDxZ8uT3GK_m6C_ABAKqOPoRrgFsJccIbkR6PnsTZdzHtsovc6VVTPeMhxDwHPMCWvZ8Crs7xEz5z2BV4d6jH6_uXz9dm35uLq6_nZ6UVjOGVz0w2ut1br3jEmrXFm2Eo2kJaCY9JQYzUxYujbzgq-HbgQbSutFNoYQ3lnJDtGH1dvWoYJrKkHZ-1VyuOk852KelT_TsJ4o3bxVlGypZRzXg3vDoYcfy5QZjWNxUD9MEBcimqFkC3vaN9X9P2KmhxLyeAe91CiHnJTNTd1yK3Sb_4-7ZH9E1QF3q5AXNJ_Tb8BIlOnew</recordid><startdate>20231211</startdate><enddate>20231211</enddate><creator>Ahmad, Tasnim</creator><creator>Kawasumi, Ryotaro</creator><creator>Taniguchi, Tomoya</creator><creator>Abe, Takuya</creator><creator>Terada, Kazuhiro</creator><creator>Tsuda, Masataka</creator><creator>Shimizu, Naoto</creator><creator>Tsurimoto, Toshiki</creator><creator>Takeda, Shunichi</creator><creator>Hirota, Kouji</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1267-3777</orcidid><orcidid>https://orcid.org/0000-0003-1676-979X</orcidid><orcidid>https://orcid.org/0000-0003-0494-3690</orcidid></search><sort><creationdate>20231211</creationdate><title>The proofreading exonuclease of leading-strand DNA polymerase epsilon prevents replication fork collapse at broken template strands</title><author>Ahmad, Tasnim ; Kawasumi, Ryotaro ; Taniguchi, Tomoya ; Abe, Takuya ; Terada, Kazuhiro ; Tsuda, Masataka ; Shimizu, Naoto ; Tsurimoto, Toshiki ; Takeda, Shunichi ; Hirota, Kouji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-5bf6ddaa6f339dcfcb793b021ef39c1cda0c8b625d847b488229d98accc145c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antineoplastic Agents</topic><topic>DNA Polymerase II - metabolism</topic><topic>DNA Replication</topic><topic>Genome Integrity, Repair and</topic><topic>Poly (ADP-Ribose) Polymerase-1 - genetics</topic><topic>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Tasnim</creatorcontrib><creatorcontrib>Kawasumi, Ryotaro</creatorcontrib><creatorcontrib>Taniguchi, Tomoya</creatorcontrib><creatorcontrib>Abe, Takuya</creatorcontrib><creatorcontrib>Terada, Kazuhiro</creatorcontrib><creatorcontrib>Tsuda, Masataka</creatorcontrib><creatorcontrib>Shimizu, Naoto</creatorcontrib><creatorcontrib>Tsurimoto, Toshiki</creatorcontrib><creatorcontrib>Takeda, Shunichi</creatorcontrib><creatorcontrib>Hirota, Kouji</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Tasnim</au><au>Kawasumi, Ryotaro</au><au>Taniguchi, Tomoya</au><au>Abe, Takuya</au><au>Terada, Kazuhiro</au><au>Tsuda, Masataka</au><au>Shimizu, Naoto</au><au>Tsurimoto, Toshiki</au><au>Takeda, Shunichi</au><au>Hirota, Kouji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The proofreading exonuclease of leading-strand DNA polymerase epsilon prevents replication fork collapse at broken template strands</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2023-12-11</date><risdate>2023</risdate><volume>51</volume><issue>22</issue><spage>12288</spage><epage>12302</epage><pages>12288-12302</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract
Leading-strand DNA replication by polymerase epsilon (Polϵ) across single-strand breaks (SSBs) causes single-ended double-strand breaks (seDSBs), which are repaired via homology-directed repair (HDR) and suppressed by fork reversal (FR). Although previous studies identified many molecules required for hydroxyurea-induced FR, FR at seDSBs is poorly understood. Here, we identified molecules that specifically mediate FR at seDSBs. Because FR at seDSBs requires poly(ADP ribose)polymerase 1 (PARP1), we hypothesized that seDSB/FR-associated molecules would increase tolerance to camptothecin (CPT) but not the PARP inhibitor olaparib, even though both anti-cancer agents generate seDSBs. Indeed, we uncovered that Polϵ exonuclease and CTF18, a Polϵ cofactor, increased tolerance to CPT but not olaparib. To explore potential functional interactions between Polϵ exonuclease, CTF18, and PARP1, we created exonuclease-deficient POLE1exo−/−, CTF18−/−, PARP1−/−, CTF18−/−/POLE1exo−/−, PARP1−/−/POLE1exo−/−, and CTF18−/−/PARP1−/− cells. Epistasis analysis indicated that Polϵ exonuclease and CTF18 were interdependent and required PARP1 for CPT tolerance. Remarkably, POLE1exo−/− and HDR-deficient BRCA1−/− cells exhibited similar CPT sensitivity. Moreover, combining POLE1exo−/− with BRCA1−/− mutations synergistically increased CPT sensitivity. In conclusion, the newly identified PARP1-CTF18-Polϵ exonuclease axis and HDR act independently to prevent fork collapse at seDSBs. Olaparib inhibits this axis, explaining the pronounced cytotoxic effects of olaparib on HDR-deficient cells.
Graphical Abstract
Graphical Abstract</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>37944988</pmid><doi>10.1093/nar/gkad999</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1267-3777</orcidid><orcidid>https://orcid.org/0000-0003-1676-979X</orcidid><orcidid>https://orcid.org/0000-0003-0494-3690</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2023-12, Vol.51 (22), p.12288-12302 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10711444 |
source | Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Antineoplastic Agents DNA Polymerase II - metabolism DNA Replication Genome Integrity, Repair and Poly (ADP-Ribose) Polymerase-1 - genetics Poly(ADP-ribose) Polymerase Inhibitors - pharmacology |
title | The proofreading exonuclease of leading-strand DNA polymerase epsilon prevents replication fork collapse at broken template strands |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20proofreading%20exonuclease%20of%20leading-strand%20DNA%20polymerase%20epsilon%20prevents%20replication%20fork%20collapse%20at%20broken%20template%20strands&rft.jtitle=Nucleic%20acids%20research&rft.au=Ahmad,%20Tasnim&rft.date=2023-12-11&rft.volume=51&rft.issue=22&rft.spage=12288&rft.epage=12302&rft.pages=12288-12302&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkad999&rft_dat=%3Cproquest_pubme%3E2889245166%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889245166&rft_id=info:pmid/37944988&rft_oup_id=10.1093/nar/gkad999&rfr_iscdi=true |