Deletion of Endothelial TRPV4 Protects Heart From Pressure Overload-Induced Hypertrophy

Left ventricular hypertrophy is a bipolar response, starting as an adaptive response to the hemodynamic challenge, but over time develops maladaptive pathology partly due to microvascular rarefaction and impaired coronary angiogenesis. Despite the profound influence on cardiac function, the mechanot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hypertension (Dallas, Tex. 1979) Tex. 1979), 2023-11, Vol.80 (11), p.2345-2356
Hauptverfasser: Adapala, Ravi K, Katari, Venkatesh, Kanugula, Anantha K, Ohanyan, Vahagn, Paruchuri, Sailaja, Thodeti, Charles K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2356
container_issue 11
container_start_page 2345
container_title Hypertension (Dallas, Tex. 1979)
container_volume 80
creator Adapala, Ravi K
Katari, Venkatesh
Kanugula, Anantha K
Ohanyan, Vahagn
Paruchuri, Sailaja
Thodeti, Charles K
description Left ventricular hypertrophy is a bipolar response, starting as an adaptive response to the hemodynamic challenge, but over time develops maladaptive pathology partly due to microvascular rarefaction and impaired coronary angiogenesis. Despite the profound influence on cardiac function, the mechanotransduction mechanisms that regulate coronary angiogenesis, leading to heart failure, are not well known. We subjected endothelial-specific knockout mice of mechanically activated ion channel, TRPV4 (transient receptor potential cation channel subfamily V member 4; TRPV4 ) to pressure overload via transverse aortic constriction and examined cardiac function, cardiomyocyte hypertrophy, cardiac fibrosis, and apoptosis. Further, we measured microvascular density and underlying TRPV4 mechanotransduction mechanisms using human microvascular endothelial cells, extracellular matrix gels of varying stiffness, unbiased RNA sequencing, small interfering RNA, Western blot, quantitative-PCR, and confocal immunofluorescence techniques. We demonstrate that endothelial-specific deletion of TRPV4 preserved cardiac function, cardiomyocyte structure, and reduced cardiac fibrosis compared with TRPV4 mice, 28 days post-transverse aortic constriction. Interestingly, comprehensive RNA sequencing analysis revealed an upregulation of proangiogenic factors (VEGFα [vascular endothelial growth factor α], NOS3 [nitric oxide synthase 3], and FGF2 [fibroblast growth factor 2]) with concomitant increase in microvascular density in TRPV4 hearts after transverse aortic constriction compared with TRPV4 . Further, an increased expression of VEGFR2 (vascular endothelial growth factor receptor 2) and activation of the YAP (yes-associated protein) pathway were observed in TRPV4 hearts. Mechanistically, we found that downregulation of TRPV4 in endothelial cells induced matrix stiffness-dependent activation of YAP and VEGFR2 via the Rho/Rho kinase/large tumor suppressor kinase pathway. Our results suggest that endothelial TRPV4 acts as a mechanical break for coronary angiogenesis, and uncoupling endothelial TRPV4 mechanotransduction attenuates pathological cardiac hypertrophy by enhancing coronary angiogenesis.
doi_str_mv 10.1161/HYPERTENSIONAHA.123.21528
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10705842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864616786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-38504c7027ef7a61d766277e6e164934c1d8e7531070cbc25b3faacf1c0815593</originalsourceid><addsrcrecordid>eNpdkUtv2zAQhImgQeI8_kKh3nqRwyUpUjoVRuJUBoLYSJ02PRE0tapVyKJLUgH876M8kfQ0wO7M7AIfIV-AjgEknJW_F9Ob5fT6x2x-PSknY2B8zCBj-R4ZDSJSkUn-iYwoFCItAO4OyVEIfykFIYQ6IIdcKcqohBH5dYEtxsZ1iauTaVe5uMa2MW2yvFn8FMnCu4g2hqRE42Ny6d1mmGEIvcdkfo--daZKZ13VW6yScrdFH73brncnZL82bcDTFz0mt5fT5XmZXs2_z84nV6kVTMSU5xkVdnhGYa2MhEpJyZRCiSBFwYWFKkeVcaCK2pVl2YrXxtgaLM0hywp-TL4992771QYri130ptVb32yM32lnGv1x0zVr_cfd68fGLBdsaPj60uDdvx5D1JsmWGxb06Hrg2a5FBKkyuVgLZ6t1rsQPNZvd4DqRzL6PzJ6IKOfyAzZz-8ffUu-ouAPA5GMrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864616786</pqid></control><display><type>article</type><title>Deletion of Endothelial TRPV4 Protects Heart From Pressure Overload-Induced Hypertrophy</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Adapala, Ravi K ; Katari, Venkatesh ; Kanugula, Anantha K ; Ohanyan, Vahagn ; Paruchuri, Sailaja ; Thodeti, Charles K</creator><creatorcontrib>Adapala, Ravi K ; Katari, Venkatesh ; Kanugula, Anantha K ; Ohanyan, Vahagn ; Paruchuri, Sailaja ; Thodeti, Charles K</creatorcontrib><description>Left ventricular hypertrophy is a bipolar response, starting as an adaptive response to the hemodynamic challenge, but over time develops maladaptive pathology partly due to microvascular rarefaction and impaired coronary angiogenesis. Despite the profound influence on cardiac function, the mechanotransduction mechanisms that regulate coronary angiogenesis, leading to heart failure, are not well known. We subjected endothelial-specific knockout mice of mechanically activated ion channel, TRPV4 (transient receptor potential cation channel subfamily V member 4; TRPV4 ) to pressure overload via transverse aortic constriction and examined cardiac function, cardiomyocyte hypertrophy, cardiac fibrosis, and apoptosis. Further, we measured microvascular density and underlying TRPV4 mechanotransduction mechanisms using human microvascular endothelial cells, extracellular matrix gels of varying stiffness, unbiased RNA sequencing, small interfering RNA, Western blot, quantitative-PCR, and confocal immunofluorescence techniques. We demonstrate that endothelial-specific deletion of TRPV4 preserved cardiac function, cardiomyocyte structure, and reduced cardiac fibrosis compared with TRPV4 mice, 28 days post-transverse aortic constriction. Interestingly, comprehensive RNA sequencing analysis revealed an upregulation of proangiogenic factors (VEGFα [vascular endothelial growth factor α], NOS3 [nitric oxide synthase 3], and FGF2 [fibroblast growth factor 2]) with concomitant increase in microvascular density in TRPV4 hearts after transverse aortic constriction compared with TRPV4 . Further, an increased expression of VEGFR2 (vascular endothelial growth factor receptor 2) and activation of the YAP (yes-associated protein) pathway were observed in TRPV4 hearts. Mechanistically, we found that downregulation of TRPV4 in endothelial cells induced matrix stiffness-dependent activation of YAP and VEGFR2 via the Rho/Rho kinase/large tumor suppressor kinase pathway. Our results suggest that endothelial TRPV4 acts as a mechanical break for coronary angiogenesis, and uncoupling endothelial TRPV4 mechanotransduction attenuates pathological cardiac hypertrophy by enhancing coronary angiogenesis.</description><identifier>ISSN: 0194-911X</identifier><identifier>ISSN: 1524-4563</identifier><identifier>EISSN: 1524-4563</identifier><identifier>DOI: 10.1161/HYPERTENSIONAHA.123.21528</identifier><identifier>PMID: 37702061</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Cardiomegaly - genetics ; Disease Models, Animal ; Endothelial Cells - metabolism ; Humans ; Hypertrophy, Left Ventricular - metabolism ; Mechanotransduction, Cellular ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myocytes, Cardiac - metabolism ; TRPV Cation Channels - genetics ; TRPV Cation Channels - metabolism ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>Hypertension (Dallas, Tex. 1979), 2023-11, Vol.80 (11), p.2345-2356</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-38504c7027ef7a61d766277e6e164934c1d8e7531070cbc25b3faacf1c0815593</citedby><cites>FETCH-LOGICAL-c424t-38504c7027ef7a61d766277e6e164934c1d8e7531070cbc25b3faacf1c0815593</cites><orcidid>0000-0001-8829-8136 ; 0000-0002-1188-6746 ; 0000-0002-4082-5301 ; 0000-0001-8823-2663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,3688,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37702061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adapala, Ravi K</creatorcontrib><creatorcontrib>Katari, Venkatesh</creatorcontrib><creatorcontrib>Kanugula, Anantha K</creatorcontrib><creatorcontrib>Ohanyan, Vahagn</creatorcontrib><creatorcontrib>Paruchuri, Sailaja</creatorcontrib><creatorcontrib>Thodeti, Charles K</creatorcontrib><title>Deletion of Endothelial TRPV4 Protects Heart From Pressure Overload-Induced Hypertrophy</title><title>Hypertension (Dallas, Tex. 1979)</title><addtitle>Hypertension</addtitle><description>Left ventricular hypertrophy is a bipolar response, starting as an adaptive response to the hemodynamic challenge, but over time develops maladaptive pathology partly due to microvascular rarefaction and impaired coronary angiogenesis. Despite the profound influence on cardiac function, the mechanotransduction mechanisms that regulate coronary angiogenesis, leading to heart failure, are not well known. We subjected endothelial-specific knockout mice of mechanically activated ion channel, TRPV4 (transient receptor potential cation channel subfamily V member 4; TRPV4 ) to pressure overload via transverse aortic constriction and examined cardiac function, cardiomyocyte hypertrophy, cardiac fibrosis, and apoptosis. Further, we measured microvascular density and underlying TRPV4 mechanotransduction mechanisms using human microvascular endothelial cells, extracellular matrix gels of varying stiffness, unbiased RNA sequencing, small interfering RNA, Western blot, quantitative-PCR, and confocal immunofluorescence techniques. We demonstrate that endothelial-specific deletion of TRPV4 preserved cardiac function, cardiomyocyte structure, and reduced cardiac fibrosis compared with TRPV4 mice, 28 days post-transverse aortic constriction. Interestingly, comprehensive RNA sequencing analysis revealed an upregulation of proangiogenic factors (VEGFα [vascular endothelial growth factor α], NOS3 [nitric oxide synthase 3], and FGF2 [fibroblast growth factor 2]) with concomitant increase in microvascular density in TRPV4 hearts after transverse aortic constriction compared with TRPV4 . Further, an increased expression of VEGFR2 (vascular endothelial growth factor receptor 2) and activation of the YAP (yes-associated protein) pathway were observed in TRPV4 hearts. Mechanistically, we found that downregulation of TRPV4 in endothelial cells induced matrix stiffness-dependent activation of YAP and VEGFR2 via the Rho/Rho kinase/large tumor suppressor kinase pathway. Our results suggest that endothelial TRPV4 acts as a mechanical break for coronary angiogenesis, and uncoupling endothelial TRPV4 mechanotransduction attenuates pathological cardiac hypertrophy by enhancing coronary angiogenesis.</description><subject>Animals</subject><subject>Cardiomegaly - genetics</subject><subject>Disease Models, Animal</subject><subject>Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Hypertrophy, Left Ventricular - metabolism</subject><subject>Mechanotransduction, Cellular</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>TRPV Cation Channels - genetics</subject><subject>TRPV Cation Channels - metabolism</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>0194-911X</issn><issn>1524-4563</issn><issn>1524-4563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv2zAQhImgQeI8_kKh3nqRwyUpUjoVRuJUBoLYSJ02PRE0tapVyKJLUgH876M8kfQ0wO7M7AIfIV-AjgEknJW_F9Ob5fT6x2x-PSknY2B8zCBj-R4ZDSJSkUn-iYwoFCItAO4OyVEIfykFIYQ6IIdcKcqohBH5dYEtxsZ1iauTaVe5uMa2MW2yvFn8FMnCu4g2hqRE42Ny6d1mmGEIvcdkfo--daZKZ13VW6yScrdFH73brncnZL82bcDTFz0mt5fT5XmZXs2_z84nV6kVTMSU5xkVdnhGYa2MhEpJyZRCiSBFwYWFKkeVcaCK2pVl2YrXxtgaLM0hywp-TL4992771QYri130ptVb32yM32lnGv1x0zVr_cfd68fGLBdsaPj60uDdvx5D1JsmWGxb06Hrg2a5FBKkyuVgLZ6t1rsQPNZvd4DqRzL6PzJ6IKOfyAzZz-8ffUu-ouAPA5GMrg</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Adapala, Ravi K</creator><creator>Katari, Venkatesh</creator><creator>Kanugula, Anantha K</creator><creator>Ohanyan, Vahagn</creator><creator>Paruchuri, Sailaja</creator><creator>Thodeti, Charles K</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8829-8136</orcidid><orcidid>https://orcid.org/0000-0002-1188-6746</orcidid><orcidid>https://orcid.org/0000-0002-4082-5301</orcidid><orcidid>https://orcid.org/0000-0001-8823-2663</orcidid></search><sort><creationdate>20231101</creationdate><title>Deletion of Endothelial TRPV4 Protects Heart From Pressure Overload-Induced Hypertrophy</title><author>Adapala, Ravi K ; Katari, Venkatesh ; Kanugula, Anantha K ; Ohanyan, Vahagn ; Paruchuri, Sailaja ; Thodeti, Charles K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-38504c7027ef7a61d766277e6e164934c1d8e7531070cbc25b3faacf1c0815593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Cardiomegaly - genetics</topic><topic>Disease Models, Animal</topic><topic>Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Hypertrophy, Left Ventricular - metabolism</topic><topic>Mechanotransduction, Cellular</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>TRPV Cation Channels - genetics</topic><topic>TRPV Cation Channels - metabolism</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adapala, Ravi K</creatorcontrib><creatorcontrib>Katari, Venkatesh</creatorcontrib><creatorcontrib>Kanugula, Anantha K</creatorcontrib><creatorcontrib>Ohanyan, Vahagn</creatorcontrib><creatorcontrib>Paruchuri, Sailaja</creatorcontrib><creatorcontrib>Thodeti, Charles K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Hypertension (Dallas, Tex. 1979)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adapala, Ravi K</au><au>Katari, Venkatesh</au><au>Kanugula, Anantha K</au><au>Ohanyan, Vahagn</au><au>Paruchuri, Sailaja</au><au>Thodeti, Charles K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deletion of Endothelial TRPV4 Protects Heart From Pressure Overload-Induced Hypertrophy</atitle><jtitle>Hypertension (Dallas, Tex. 1979)</jtitle><addtitle>Hypertension</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>80</volume><issue>11</issue><spage>2345</spage><epage>2356</epage><pages>2345-2356</pages><issn>0194-911X</issn><issn>1524-4563</issn><eissn>1524-4563</eissn><abstract>Left ventricular hypertrophy is a bipolar response, starting as an adaptive response to the hemodynamic challenge, but over time develops maladaptive pathology partly due to microvascular rarefaction and impaired coronary angiogenesis. Despite the profound influence on cardiac function, the mechanotransduction mechanisms that regulate coronary angiogenesis, leading to heart failure, are not well known. We subjected endothelial-specific knockout mice of mechanically activated ion channel, TRPV4 (transient receptor potential cation channel subfamily V member 4; TRPV4 ) to pressure overload via transverse aortic constriction and examined cardiac function, cardiomyocyte hypertrophy, cardiac fibrosis, and apoptosis. Further, we measured microvascular density and underlying TRPV4 mechanotransduction mechanisms using human microvascular endothelial cells, extracellular matrix gels of varying stiffness, unbiased RNA sequencing, small interfering RNA, Western blot, quantitative-PCR, and confocal immunofluorescence techniques. We demonstrate that endothelial-specific deletion of TRPV4 preserved cardiac function, cardiomyocyte structure, and reduced cardiac fibrosis compared with TRPV4 mice, 28 days post-transverse aortic constriction. Interestingly, comprehensive RNA sequencing analysis revealed an upregulation of proangiogenic factors (VEGFα [vascular endothelial growth factor α], NOS3 [nitric oxide synthase 3], and FGF2 [fibroblast growth factor 2]) with concomitant increase in microvascular density in TRPV4 hearts after transverse aortic constriction compared with TRPV4 . Further, an increased expression of VEGFR2 (vascular endothelial growth factor receptor 2) and activation of the YAP (yes-associated protein) pathway were observed in TRPV4 hearts. Mechanistically, we found that downregulation of TRPV4 in endothelial cells induced matrix stiffness-dependent activation of YAP and VEGFR2 via the Rho/Rho kinase/large tumor suppressor kinase pathway. Our results suggest that endothelial TRPV4 acts as a mechanical break for coronary angiogenesis, and uncoupling endothelial TRPV4 mechanotransduction attenuates pathological cardiac hypertrophy by enhancing coronary angiogenesis.</abstract><cop>United States</cop><pmid>37702061</pmid><doi>10.1161/HYPERTENSIONAHA.123.21528</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8829-8136</orcidid><orcidid>https://orcid.org/0000-0002-1188-6746</orcidid><orcidid>https://orcid.org/0000-0002-4082-5301</orcidid><orcidid>https://orcid.org/0000-0001-8823-2663</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0194-911X
ispartof Hypertension (Dallas, Tex. 1979), 2023-11, Vol.80 (11), p.2345-2356
issn 0194-911X
1524-4563
1524-4563
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10705842
source MEDLINE; American Heart Association Journals; EZB-FREE-00999 freely available EZB journals
subjects Animals
Cardiomegaly - genetics
Disease Models, Animal
Endothelial Cells - metabolism
Humans
Hypertrophy, Left Ventricular - metabolism
Mechanotransduction, Cellular
Mice
Mice, Inbred C57BL
Mice, Knockout
Myocytes, Cardiac - metabolism
TRPV Cation Channels - genetics
TRPV Cation Channels - metabolism
Vascular Endothelial Growth Factor A - metabolism
title Deletion of Endothelial TRPV4 Protects Heart From Pressure Overload-Induced Hypertrophy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T02%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deletion%20of%20Endothelial%20TRPV4%20Protects%20Heart%20From%20Pressure%20Overload-Induced%20Hypertrophy&rft.jtitle=Hypertension%20(Dallas,%20Tex.%201979)&rft.au=Adapala,%20Ravi%20K&rft.date=2023-11-01&rft.volume=80&rft.issue=11&rft.spage=2345&rft.epage=2356&rft.pages=2345-2356&rft.issn=0194-911X&rft.eissn=1524-4563&rft_id=info:doi/10.1161/HYPERTENSIONAHA.123.21528&rft_dat=%3Cproquest_pubme%3E2864616786%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864616786&rft_id=info:pmid/37702061&rfr_iscdi=true