Structural Basis for the Interaction between Pectin Methylesterase and a Specific Inhibitor Protein

Pectin, one of the main components of the plant cell wall, is secreted in a highly methyl-esterified form and subsequently deesterified in muro by pectin methylesterases (PMEs). In many developmental processes, PMEs are regulated by either differential expression or posttranslational control by prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2005-03, Vol.17 (3), p.849-858
Hauptverfasser: Adele Di Matteo, Alfonso Giovane, Alessandro Raiola, Camardella, Laura, Daniele Bonivento, De Lorenzo, Giulia, Cervone, Felice, Bellincampi, Daniela, Tsernoglou, Demetrius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pectin, one of the main components of the plant cell wall, is secreted in a highly methyl-esterified form and subsequently deesterified in muro by pectin methylesterases (PMEs). In many developmental processes, PMEs are regulated by either differential expression or posttranslational control by protein inhibitors (PMEIs). PMEIs are typically active against plant PMEs and ineffective against microbial enzymes. Here, we describe the three-dimensional structure of the complex between the most abundant PME isoform from tomato fruit (Lycopersicon esculentum) and PMEI from kiwi (Actinidia deliciosa) at 1.9-Å resolution. The enzyme folds into a right-handed parallel β-helical structure typical of pectic enzymes. The inhibitor is almost all helical, with four long α-helices aligned in an antiparallel manner in a classical up-and-down four-helical bundle. The two proteins form a stoichiometric 1:1 complex in which the inhibitor covers the shallow cleft of the enzyme where the putative active site is located. The four-helix bundle of the inhibitor packs roughly perpendicular to the main axis of the parallel β-helix of PME, and three helices of the bundle interact with the enzyme. The interaction interface displays a polar character, typical of nonobligate complexes formed by soluble proteins. The structure of the complex gives an insight into the specificity of the inhibitor toward plant PMEs and the mechanism of regulation of these enzymes.
ISSN:1040-4651
1532-298X
DOI:10.1105/tpc.104.028886