Exploring the potential of a new thermotolerant xylanase from Rasamsonia composticola (XylRc): production using agro-residues, biochemical studies, and application to sugarcane bagasse saccharification

Xylanases from thermophilic fungi have a wide range of commercial applications in the bioconversion of lignocellulosic materials and biobleaching in the pulp and paper industry. In this study, an endoxylanase from the thermophilic fungus Rasamsonia composticola (XylRc) was produced using waste wheat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:3 Biotech 2024-01, Vol.14 (1), p.3-3, Article 3
Hauptverfasser: Franco, Daniel Guerra, de Almeida, Aline Pereira, Galeano, Rodrigo Mattos Silva, Vargas, Isabela Pavão, Masui, Douglas Chodi, Giannesi, Giovana Cristina, Ruller, Roberto, Zanoelo, Fabiana Fonseca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3
container_issue 1
container_start_page 3
container_title 3 Biotech
container_volume 14
creator Franco, Daniel Guerra
de Almeida, Aline Pereira
Galeano, Rodrigo Mattos Silva
Vargas, Isabela Pavão
Masui, Douglas Chodi
Giannesi, Giovana Cristina
Ruller, Roberto
Zanoelo, Fabiana Fonseca
description Xylanases from thermophilic fungi have a wide range of commercial applications in the bioconversion of lignocellulosic materials and biobleaching in the pulp and paper industry. In this study, an endoxylanase from the thermophilic fungus Rasamsonia composticola (XylRc) was produced using waste wheat bran and pretreated sugarcane bagasse (PSB) in solid-state fermentation. The enzyme was purified, biochemically characterized, and used for the saccharification of sugarcane bagasse. XylRc was purified 30.6-fold with a 22% yield. The analysis using sodium dodecyl sulphate–polyacrylamide gel electrophoresis revealed a molecular weight of 53 kDa, with optimal temperature and pH values of 80 °C and 5.5, respectively. Thin-layer chromatography suggests that the enzyme is an endoxylanase and belongs to the glycoside hydrolase 10 family. The enzyme was stimulated by the presence of K + , Ca 2+ , Mg 2+ , and Co 2+ and remained stable in the presence of the surfactant Triton X-100. XylRc was also stimulated by organic solvents butanol (113%), ethanol (175%), isopropanol (176%), and acetone (185%). The K m and V max values for oat spelt and birchwood xylan were 6.7 ± 0.7 mg/mL, 2.3 ± 0.59 mg/mL, 446.7 ± 12.7 µmol/min/mg, and 173.7 ± 6.5 µmol/min/mg, respectively. XylRc was unaffected by different phenolic compounds: ferulic, tannic, cinnamic, benzoic, and coumaric acids at concentrations of 2.5–10 mg/mL. The results of saccharification of PSB showed that supplementation of a commercial enzymatic cocktail (Cellic® CTec2) with XylRc (1:1 w/v) led to an increase in the degree of synergism (DS) in total reducing sugar (1.28) and glucose released (1.05) compared to the control (Cellic® HTec2). In summary, XylRc demonstrated significant potential for applications in lignocellulosic biomass hydrolysis, making it an attractive alternative for producing xylooligosaccharides and xylose, which can serve as precursors for biofuel production.
doi_str_mv 10.1007/s13205-023-03844-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10695910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2897556796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-9f5cdd2697c54731a389bfdc4721a470c7edfb65438fbe69c991ad2afe45f1293</originalsourceid><addsrcrecordid>eNqFktuK1TAUhosozjDOC3ghAW9GsJpD0zbeiAzjAQaEQWHuwmqadGdok5qkOvsRfSvT2dvt4UJzk7Dy5V8rP39RPCb4BcG4eRkJo5iXmLISs7aqSnyvOKZE4JI3rL1_ONPro-I0xhucFydcEPywOGIt5i2rq-Pi-8XtPPpg3YDSRqPZJ-2ShRF5gwA5_W0th8knP-oALqHb7QgOokYm-AldQYQpemcBKT_NPiar_Ajo7Ho7Xqlnr9AcfL-oZL1DS1y7wBB8GXS0_aLjc9RZrzZ6siq3jGnp7VoE1yOY5zFX714mj-IyQFDgNOpggJj7R1BqA8GaPfWoeGBgjPp0v58Un99efDp_X15-fPfh_M1lqSrCUykMV31Pa9EoXjWMAGtFZ3pVNZRA1WDV6N50Na9YazpdCyUEgZ6C0RU3hAp2Urze6c5LN-leZb8CjHIOdoKwlR6s_PPG2Y0c_FdJcC1W_7PC2V4h-C_ZhSQnG5Ues7HaL1EywlldV7zl_0VpKwRraFtXGX36F3rjl-CyFSvVcF43os4U3VEq-BiDNofBCZZrsOQuWDIHS94FS64DP_n9y4cnP2OUAbYD4rxGSYdfvf8h-wNWN98S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2897556796</pqid></control><display><type>article</type><title>Exploring the potential of a new thermotolerant xylanase from Rasamsonia composticola (XylRc): production using agro-residues, biochemical studies, and application to sugarcane bagasse saccharification</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Franco, Daniel Guerra ; de Almeida, Aline Pereira ; Galeano, Rodrigo Mattos Silva ; Vargas, Isabela Pavão ; Masui, Douglas Chodi ; Giannesi, Giovana Cristina ; Ruller, Roberto ; Zanoelo, Fabiana Fonseca</creator><creatorcontrib>Franco, Daniel Guerra ; de Almeida, Aline Pereira ; Galeano, Rodrigo Mattos Silva ; Vargas, Isabela Pavão ; Masui, Douglas Chodi ; Giannesi, Giovana Cristina ; Ruller, Roberto ; Zanoelo, Fabiana Fonseca</creatorcontrib><description>Xylanases from thermophilic fungi have a wide range of commercial applications in the bioconversion of lignocellulosic materials and biobleaching in the pulp and paper industry. In this study, an endoxylanase from the thermophilic fungus Rasamsonia composticola (XylRc) was produced using waste wheat bran and pretreated sugarcane bagasse (PSB) in solid-state fermentation. The enzyme was purified, biochemically characterized, and used for the saccharification of sugarcane bagasse. XylRc was purified 30.6-fold with a 22% yield. The analysis using sodium dodecyl sulphate–polyacrylamide gel electrophoresis revealed a molecular weight of 53 kDa, with optimal temperature and pH values of 80 °C and 5.5, respectively. Thin-layer chromatography suggests that the enzyme is an endoxylanase and belongs to the glycoside hydrolase 10 family. The enzyme was stimulated by the presence of K + , Ca 2+ , Mg 2+ , and Co 2+ and remained stable in the presence of the surfactant Triton X-100. XylRc was also stimulated by organic solvents butanol (113%), ethanol (175%), isopropanol (176%), and acetone (185%). The K m and V max values for oat spelt and birchwood xylan were 6.7 ± 0.7 mg/mL, 2.3 ± 0.59 mg/mL, 446.7 ± 12.7 µmol/min/mg, and 173.7 ± 6.5 µmol/min/mg, respectively. XylRc was unaffected by different phenolic compounds: ferulic, tannic, cinnamic, benzoic, and coumaric acids at concentrations of 2.5–10 mg/mL. The results of saccharification of PSB showed that supplementation of a commercial enzymatic cocktail (Cellic® CTec2) with XylRc (1:1 w/v) led to an increase in the degree of synergism (DS) in total reducing sugar (1.28) and glucose released (1.05) compared to the control (Cellic® HTec2). In summary, XylRc demonstrated significant potential for applications in lignocellulosic biomass hydrolysis, making it an attractive alternative for producing xylooligosaccharides and xylose, which can serve as precursors for biofuel production.</description><identifier>ISSN: 2190-572X</identifier><identifier>ISSN: 2190-5738</identifier><identifier>EISSN: 2190-5738</identifier><identifier>DOI: 10.1007/s13205-023-03844-0</identifier><identifier>PMID: 38058364</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>acetone ; Agriculture ; Bagasse ; biobleaching ; Bioconversion ; Biofuels ; Bioinformatics ; biomass ; Biomaterials ; Biotechnology ; biotransformation ; Butanol ; calcium ; Calcium ions ; Cancer Research ; Carbon dioxide ; Chemistry ; Chemistry and Materials Science ; Cobalt ; Composting ; Electrophoresis ; endo-1,4-beta-xylanase ; Enzymes ; Ethanol ; family ; fuel production ; Fungi ; glucose ; Glycosidases ; Glycoside hydrolase ; glycosides ; heat tolerance ; hydrolysis ; isopropyl alcohol ; Lignocellulose ; Magnesium ; Molecular weight ; oats ; octoxynol ; Original ; Original Article ; Phenolic compounds ; Phenols ; Polyacrylamide ; polyacrylamide gel electrophoresis ; pulp and paper industry ; Rasamsonia ; Saccharification ; Sodium dodecyl sulfate ; Sodium lauryl sulfate ; Solid state fermentation ; Stem Cells ; Sugarcane ; sugarcane bagasse ; surfactants ; synergism ; temperature ; Thermophilic fungi ; Thin layer chromatography ; wheat bran ; Xylan ; Xylanase ; xylooligosaccharides ; xylose</subject><ispartof>3 Biotech, 2024-01, Vol.14 (1), p.3-3, Article 3</ispartof><rights>King Abdulaziz City for Science and Technology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c415t-9f5cdd2697c54731a389bfdc4721a470c7edfb65438fbe69c991ad2afe45f1293</cites><orcidid>0000-0002-3858-1467 ; 0000-0001-8256-9441 ; 0000-0002-5778-0322 ; 0000-0001-7501-5176 ; 0000-0002-9546-7177 ; 0000-0003-0033-8178 ; 0000-0002-0901-5722 ; 0000-0003-4015-7996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695910/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695910/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38058364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Franco, Daniel Guerra</creatorcontrib><creatorcontrib>de Almeida, Aline Pereira</creatorcontrib><creatorcontrib>Galeano, Rodrigo Mattos Silva</creatorcontrib><creatorcontrib>Vargas, Isabela Pavão</creatorcontrib><creatorcontrib>Masui, Douglas Chodi</creatorcontrib><creatorcontrib>Giannesi, Giovana Cristina</creatorcontrib><creatorcontrib>Ruller, Roberto</creatorcontrib><creatorcontrib>Zanoelo, Fabiana Fonseca</creatorcontrib><title>Exploring the potential of a new thermotolerant xylanase from Rasamsonia composticola (XylRc): production using agro-residues, biochemical studies, and application to sugarcane bagasse saccharification</title><title>3 Biotech</title><addtitle>3 Biotech</addtitle><addtitle>3 Biotech</addtitle><description>Xylanases from thermophilic fungi have a wide range of commercial applications in the bioconversion of lignocellulosic materials and biobleaching in the pulp and paper industry. In this study, an endoxylanase from the thermophilic fungus Rasamsonia composticola (XylRc) was produced using waste wheat bran and pretreated sugarcane bagasse (PSB) in solid-state fermentation. The enzyme was purified, biochemically characterized, and used for the saccharification of sugarcane bagasse. XylRc was purified 30.6-fold with a 22% yield. The analysis using sodium dodecyl sulphate–polyacrylamide gel electrophoresis revealed a molecular weight of 53 kDa, with optimal temperature and pH values of 80 °C and 5.5, respectively. Thin-layer chromatography suggests that the enzyme is an endoxylanase and belongs to the glycoside hydrolase 10 family. The enzyme was stimulated by the presence of K + , Ca 2+ , Mg 2+ , and Co 2+ and remained stable in the presence of the surfactant Triton X-100. XylRc was also stimulated by organic solvents butanol (113%), ethanol (175%), isopropanol (176%), and acetone (185%). The K m and V max values for oat spelt and birchwood xylan were 6.7 ± 0.7 mg/mL, 2.3 ± 0.59 mg/mL, 446.7 ± 12.7 µmol/min/mg, and 173.7 ± 6.5 µmol/min/mg, respectively. XylRc was unaffected by different phenolic compounds: ferulic, tannic, cinnamic, benzoic, and coumaric acids at concentrations of 2.5–10 mg/mL. The results of saccharification of PSB showed that supplementation of a commercial enzymatic cocktail (Cellic® CTec2) with XylRc (1:1 w/v) led to an increase in the degree of synergism (DS) in total reducing sugar (1.28) and glucose released (1.05) compared to the control (Cellic® HTec2). In summary, XylRc demonstrated significant potential for applications in lignocellulosic biomass hydrolysis, making it an attractive alternative for producing xylooligosaccharides and xylose, which can serve as precursors for biofuel production.</description><subject>acetone</subject><subject>Agriculture</subject><subject>Bagasse</subject><subject>biobleaching</subject><subject>Bioconversion</subject><subject>Biofuels</subject><subject>Bioinformatics</subject><subject>biomass</subject><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>biotransformation</subject><subject>Butanol</subject><subject>calcium</subject><subject>Calcium ions</subject><subject>Cancer Research</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Composting</subject><subject>Electrophoresis</subject><subject>endo-1,4-beta-xylanase</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>family</subject><subject>fuel production</subject><subject>Fungi</subject><subject>glucose</subject><subject>Glycosidases</subject><subject>Glycoside hydrolase</subject><subject>glycosides</subject><subject>heat tolerance</subject><subject>hydrolysis</subject><subject>isopropyl alcohol</subject><subject>Lignocellulose</subject><subject>Magnesium</subject><subject>Molecular weight</subject><subject>oats</subject><subject>octoxynol</subject><subject>Original</subject><subject>Original Article</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Polyacrylamide</subject><subject>polyacrylamide gel electrophoresis</subject><subject>pulp and paper industry</subject><subject>Rasamsonia</subject><subject>Saccharification</subject><subject>Sodium dodecyl sulfate</subject><subject>Sodium lauryl sulfate</subject><subject>Solid state fermentation</subject><subject>Stem Cells</subject><subject>Sugarcane</subject><subject>sugarcane bagasse</subject><subject>surfactants</subject><subject>synergism</subject><subject>temperature</subject><subject>Thermophilic fungi</subject><subject>Thin layer chromatography</subject><subject>wheat bran</subject><subject>Xylan</subject><subject>Xylanase</subject><subject>xylooligosaccharides</subject><subject>xylose</subject><issn>2190-572X</issn><issn>2190-5738</issn><issn>2190-5738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFktuK1TAUhosozjDOC3ghAW9GsJpD0zbeiAzjAQaEQWHuwmqadGdok5qkOvsRfSvT2dvt4UJzk7Dy5V8rP39RPCb4BcG4eRkJo5iXmLISs7aqSnyvOKZE4JI3rL1_ONPro-I0xhucFydcEPywOGIt5i2rq-Pi-8XtPPpg3YDSRqPZJ-2ShRF5gwA5_W0th8knP-oALqHb7QgOokYm-AldQYQpemcBKT_NPiar_Ajo7Ho7Xqlnr9AcfL-oZL1DS1y7wBB8GXS0_aLjc9RZrzZ6siq3jGnp7VoE1yOY5zFX714mj-IyQFDgNOpggJj7R1BqA8GaPfWoeGBgjPp0v58Un99efDp_X15-fPfh_M1lqSrCUykMV31Pa9EoXjWMAGtFZ3pVNZRA1WDV6N50Na9YazpdCyUEgZ6C0RU3hAp2Urze6c5LN-leZb8CjHIOdoKwlR6s_PPG2Y0c_FdJcC1W_7PC2V4h-C_ZhSQnG5Ues7HaL1EywlldV7zl_0VpKwRraFtXGX36F3rjl-CyFSvVcF43os4U3VEq-BiDNofBCZZrsOQuWDIHS94FS64DP_n9y4cnP2OUAbYD4rxGSYdfvf8h-wNWN98S</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Franco, Daniel Guerra</creator><creator>de Almeida, Aline Pereira</creator><creator>Galeano, Rodrigo Mattos Silva</creator><creator>Vargas, Isabela Pavão</creator><creator>Masui, Douglas Chodi</creator><creator>Giannesi, Giovana Cristina</creator><creator>Ruller, Roberto</creator><creator>Zanoelo, Fabiana Fonseca</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3858-1467</orcidid><orcidid>https://orcid.org/0000-0001-8256-9441</orcidid><orcidid>https://orcid.org/0000-0002-5778-0322</orcidid><orcidid>https://orcid.org/0000-0001-7501-5176</orcidid><orcidid>https://orcid.org/0000-0002-9546-7177</orcidid><orcidid>https://orcid.org/0000-0003-0033-8178</orcidid><orcidid>https://orcid.org/0000-0002-0901-5722</orcidid><orcidid>https://orcid.org/0000-0003-4015-7996</orcidid></search><sort><creationdate>20240101</creationdate><title>Exploring the potential of a new thermotolerant xylanase from Rasamsonia composticola (XylRc): production using agro-residues, biochemical studies, and application to sugarcane bagasse saccharification</title><author>Franco, Daniel Guerra ; de Almeida, Aline Pereira ; Galeano, Rodrigo Mattos Silva ; Vargas, Isabela Pavão ; Masui, Douglas Chodi ; Giannesi, Giovana Cristina ; Ruller, Roberto ; Zanoelo, Fabiana Fonseca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-9f5cdd2697c54731a389bfdc4721a470c7edfb65438fbe69c991ad2afe45f1293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acetone</topic><topic>Agriculture</topic><topic>Bagasse</topic><topic>biobleaching</topic><topic>Bioconversion</topic><topic>Biofuels</topic><topic>Bioinformatics</topic><topic>biomass</topic><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>biotransformation</topic><topic>Butanol</topic><topic>calcium</topic><topic>Calcium ions</topic><topic>Cancer Research</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Composting</topic><topic>Electrophoresis</topic><topic>endo-1,4-beta-xylanase</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>family</topic><topic>fuel production</topic><topic>Fungi</topic><topic>glucose</topic><topic>Glycosidases</topic><topic>Glycoside hydrolase</topic><topic>glycosides</topic><topic>heat tolerance</topic><topic>hydrolysis</topic><topic>isopropyl alcohol</topic><topic>Lignocellulose</topic><topic>Magnesium</topic><topic>Molecular weight</topic><topic>oats</topic><topic>octoxynol</topic><topic>Original</topic><topic>Original Article</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Polyacrylamide</topic><topic>polyacrylamide gel electrophoresis</topic><topic>pulp and paper industry</topic><topic>Rasamsonia</topic><topic>Saccharification</topic><topic>Sodium dodecyl sulfate</topic><topic>Sodium lauryl sulfate</topic><topic>Solid state fermentation</topic><topic>Stem Cells</topic><topic>Sugarcane</topic><topic>sugarcane bagasse</topic><topic>surfactants</topic><topic>synergism</topic><topic>temperature</topic><topic>Thermophilic fungi</topic><topic>Thin layer chromatography</topic><topic>wheat bran</topic><topic>Xylan</topic><topic>Xylanase</topic><topic>xylooligosaccharides</topic><topic>xylose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franco, Daniel Guerra</creatorcontrib><creatorcontrib>de Almeida, Aline Pereira</creatorcontrib><creatorcontrib>Galeano, Rodrigo Mattos Silva</creatorcontrib><creatorcontrib>Vargas, Isabela Pavão</creatorcontrib><creatorcontrib>Masui, Douglas Chodi</creatorcontrib><creatorcontrib>Giannesi, Giovana Cristina</creatorcontrib><creatorcontrib>Ruller, Roberto</creatorcontrib><creatorcontrib>Zanoelo, Fabiana Fonseca</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>3 Biotech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franco, Daniel Guerra</au><au>de Almeida, Aline Pereira</au><au>Galeano, Rodrigo Mattos Silva</au><au>Vargas, Isabela Pavão</au><au>Masui, Douglas Chodi</au><au>Giannesi, Giovana Cristina</au><au>Ruller, Roberto</au><au>Zanoelo, Fabiana Fonseca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the potential of a new thermotolerant xylanase from Rasamsonia composticola (XylRc): production using agro-residues, biochemical studies, and application to sugarcane bagasse saccharification</atitle><jtitle>3 Biotech</jtitle><stitle>3 Biotech</stitle><addtitle>3 Biotech</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>3</spage><epage>3</epage><pages>3-3</pages><artnum>3</artnum><issn>2190-572X</issn><issn>2190-5738</issn><eissn>2190-5738</eissn><abstract>Xylanases from thermophilic fungi have a wide range of commercial applications in the bioconversion of lignocellulosic materials and biobleaching in the pulp and paper industry. In this study, an endoxylanase from the thermophilic fungus Rasamsonia composticola (XylRc) was produced using waste wheat bran and pretreated sugarcane bagasse (PSB) in solid-state fermentation. The enzyme was purified, biochemically characterized, and used for the saccharification of sugarcane bagasse. XylRc was purified 30.6-fold with a 22% yield. The analysis using sodium dodecyl sulphate–polyacrylamide gel electrophoresis revealed a molecular weight of 53 kDa, with optimal temperature and pH values of 80 °C and 5.5, respectively. Thin-layer chromatography suggests that the enzyme is an endoxylanase and belongs to the glycoside hydrolase 10 family. The enzyme was stimulated by the presence of K + , Ca 2+ , Mg 2+ , and Co 2+ and remained stable in the presence of the surfactant Triton X-100. XylRc was also stimulated by organic solvents butanol (113%), ethanol (175%), isopropanol (176%), and acetone (185%). The K m and V max values for oat spelt and birchwood xylan were 6.7 ± 0.7 mg/mL, 2.3 ± 0.59 mg/mL, 446.7 ± 12.7 µmol/min/mg, and 173.7 ± 6.5 µmol/min/mg, respectively. XylRc was unaffected by different phenolic compounds: ferulic, tannic, cinnamic, benzoic, and coumaric acids at concentrations of 2.5–10 mg/mL. The results of saccharification of PSB showed that supplementation of a commercial enzymatic cocktail (Cellic® CTec2) with XylRc (1:1 w/v) led to an increase in the degree of synergism (DS) in total reducing sugar (1.28) and glucose released (1.05) compared to the control (Cellic® HTec2). In summary, XylRc demonstrated significant potential for applications in lignocellulosic biomass hydrolysis, making it an attractive alternative for producing xylooligosaccharides and xylose, which can serve as precursors for biofuel production.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38058364</pmid><doi>10.1007/s13205-023-03844-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3858-1467</orcidid><orcidid>https://orcid.org/0000-0001-8256-9441</orcidid><orcidid>https://orcid.org/0000-0002-5778-0322</orcidid><orcidid>https://orcid.org/0000-0001-7501-5176</orcidid><orcidid>https://orcid.org/0000-0002-9546-7177</orcidid><orcidid>https://orcid.org/0000-0003-0033-8178</orcidid><orcidid>https://orcid.org/0000-0002-0901-5722</orcidid><orcidid>https://orcid.org/0000-0003-4015-7996</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-572X
ispartof 3 Biotech, 2024-01, Vol.14 (1), p.3-3, Article 3
issn 2190-572X
2190-5738
2190-5738
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10695910
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects acetone
Agriculture
Bagasse
biobleaching
Bioconversion
Biofuels
Bioinformatics
biomass
Biomaterials
Biotechnology
biotransformation
Butanol
calcium
Calcium ions
Cancer Research
Carbon dioxide
Chemistry
Chemistry and Materials Science
Cobalt
Composting
Electrophoresis
endo-1,4-beta-xylanase
Enzymes
Ethanol
family
fuel production
Fungi
glucose
Glycosidases
Glycoside hydrolase
glycosides
heat tolerance
hydrolysis
isopropyl alcohol
Lignocellulose
Magnesium
Molecular weight
oats
octoxynol
Original
Original Article
Phenolic compounds
Phenols
Polyacrylamide
polyacrylamide gel electrophoresis
pulp and paper industry
Rasamsonia
Saccharification
Sodium dodecyl sulfate
Sodium lauryl sulfate
Solid state fermentation
Stem Cells
Sugarcane
sugarcane bagasse
surfactants
synergism
temperature
Thermophilic fungi
Thin layer chromatography
wheat bran
Xylan
Xylanase
xylooligosaccharides
xylose
title Exploring the potential of a new thermotolerant xylanase from Rasamsonia composticola (XylRc): production using agro-residues, biochemical studies, and application to sugarcane bagasse saccharification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20potential%20of%20a%20new%20thermotolerant%20xylanase%20from%20Rasamsonia%20composticola%20(XylRc):%20production%20using%20agro-residues,%20biochemical%20studies,%20and%20application%20to%20sugarcane%20bagasse%20saccharification&rft.jtitle=3%20Biotech&rft.au=Franco,%20Daniel%20Guerra&rft.date=2024-01-01&rft.volume=14&rft.issue=1&rft.spage=3&rft.epage=3&rft.pages=3-3&rft.artnum=3&rft.issn=2190-572X&rft.eissn=2190-5738&rft_id=info:doi/10.1007/s13205-023-03844-0&rft_dat=%3Cproquest_pubme%3E2897556796%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2897556796&rft_id=info:pmid/38058364&rfr_iscdi=true