Exploring the potential of a new thermotolerant xylanase from Rasamsonia composticola (XylRc): production using agro-residues, biochemical studies, and application to sugarcane bagasse saccharification
Xylanases from thermophilic fungi have a wide range of commercial applications in the bioconversion of lignocellulosic materials and biobleaching in the pulp and paper industry. In this study, an endoxylanase from the thermophilic fungus Rasamsonia composticola (XylRc) was produced using waste wheat...
Gespeichert in:
Veröffentlicht in: | 3 Biotech 2024-01, Vol.14 (1), p.3-3, Article 3 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3 |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | 3 Biotech |
container_volume | 14 |
creator | Franco, Daniel Guerra de Almeida, Aline Pereira Galeano, Rodrigo Mattos Silva Vargas, Isabela Pavão Masui, Douglas Chodi Giannesi, Giovana Cristina Ruller, Roberto Zanoelo, Fabiana Fonseca |
description | Xylanases from thermophilic fungi have a wide range of commercial applications in the bioconversion of lignocellulosic materials and biobleaching in the pulp and paper industry. In this study, an endoxylanase from the thermophilic fungus
Rasamsonia composticola
(XylRc) was produced using waste wheat bran and pretreated sugarcane bagasse (PSB) in solid-state fermentation. The enzyme was purified, biochemically characterized, and used for the saccharification of sugarcane bagasse. XylRc was purified 30.6-fold with a 22% yield. The analysis using sodium dodecyl sulphate–polyacrylamide gel electrophoresis revealed a molecular weight of 53 kDa, with optimal temperature and pH values of 80 °C and 5.5, respectively. Thin-layer chromatography suggests that the enzyme is an endoxylanase and belongs to the glycoside hydrolase 10 family. The enzyme was stimulated by the presence of K
+
, Ca
2+
, Mg
2+
, and Co
2+
and remained stable in the presence of the surfactant Triton X-100. XylRc was also stimulated by organic solvents butanol (113%), ethanol (175%), isopropanol (176%), and acetone (185%). The
K
m
and
V
max
values for oat spelt and birchwood xylan were 6.7 ± 0.7 mg/mL, 2.3 ± 0.59 mg/mL, 446.7 ± 12.7 µmol/min/mg, and 173.7 ± 6.5 µmol/min/mg, respectively. XylRc was unaffected by different phenolic compounds: ferulic, tannic, cinnamic, benzoic, and coumaric acids at concentrations of 2.5–10 mg/mL. The results of saccharification of PSB showed that supplementation of a commercial enzymatic cocktail (Cellic® CTec2) with XylRc (1:1 w/v) led to an increase in the degree of synergism (DS) in total reducing sugar (1.28) and glucose released (1.05) compared to the control (Cellic® HTec2). In summary, XylRc demonstrated significant potential for applications in lignocellulosic biomass hydrolysis, making it an attractive alternative for producing xylooligosaccharides and xylose, which can serve as precursors for biofuel production. |
doi_str_mv | 10.1007/s13205-023-03844-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10695910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2897556796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-9f5cdd2697c54731a389bfdc4721a470c7edfb65438fbe69c991ad2afe45f1293</originalsourceid><addsrcrecordid>eNqFktuK1TAUhosozjDOC3ghAW9GsJpD0zbeiAzjAQaEQWHuwmqadGdok5qkOvsRfSvT2dvt4UJzk7Dy5V8rP39RPCb4BcG4eRkJo5iXmLISs7aqSnyvOKZE4JI3rL1_ONPro-I0xhucFydcEPywOGIt5i2rq-Pi-8XtPPpg3YDSRqPZJ-2ShRF5gwA5_W0th8knP-oALqHb7QgOokYm-AldQYQpemcBKT_NPiar_Ajo7Ho7Xqlnr9AcfL-oZL1DS1y7wBB8GXS0_aLjc9RZrzZ6siq3jGnp7VoE1yOY5zFX714mj-IyQFDgNOpggJj7R1BqA8GaPfWoeGBgjPp0v58Un99efDp_X15-fPfh_M1lqSrCUykMV31Pa9EoXjWMAGtFZ3pVNZRA1WDV6N50Na9YazpdCyUEgZ6C0RU3hAp2Urze6c5LN-leZb8CjHIOdoKwlR6s_PPG2Y0c_FdJcC1W_7PC2V4h-C_ZhSQnG5Ues7HaL1EywlldV7zl_0VpKwRraFtXGX36F3rjl-CyFSvVcF43os4U3VEq-BiDNofBCZZrsOQuWDIHS94FS64DP_n9y4cnP2OUAbYD4rxGSYdfvf8h-wNWN98S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2897556796</pqid></control><display><type>article</type><title>Exploring the potential of a new thermotolerant xylanase from Rasamsonia composticola (XylRc): production using agro-residues, biochemical studies, and application to sugarcane bagasse saccharification</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Franco, Daniel Guerra ; de Almeida, Aline Pereira ; Galeano, Rodrigo Mattos Silva ; Vargas, Isabela Pavão ; Masui, Douglas Chodi ; Giannesi, Giovana Cristina ; Ruller, Roberto ; Zanoelo, Fabiana Fonseca</creator><creatorcontrib>Franco, Daniel Guerra ; de Almeida, Aline Pereira ; Galeano, Rodrigo Mattos Silva ; Vargas, Isabela Pavão ; Masui, Douglas Chodi ; Giannesi, Giovana Cristina ; Ruller, Roberto ; Zanoelo, Fabiana Fonseca</creatorcontrib><description>Xylanases from thermophilic fungi have a wide range of commercial applications in the bioconversion of lignocellulosic materials and biobleaching in the pulp and paper industry. In this study, an endoxylanase from the thermophilic fungus
Rasamsonia composticola
(XylRc) was produced using waste wheat bran and pretreated sugarcane bagasse (PSB) in solid-state fermentation. The enzyme was purified, biochemically characterized, and used for the saccharification of sugarcane bagasse. XylRc was purified 30.6-fold with a 22% yield. The analysis using sodium dodecyl sulphate–polyacrylamide gel electrophoresis revealed a molecular weight of 53 kDa, with optimal temperature and pH values of 80 °C and 5.5, respectively. Thin-layer chromatography suggests that the enzyme is an endoxylanase and belongs to the glycoside hydrolase 10 family. The enzyme was stimulated by the presence of K
+
, Ca
2+
, Mg
2+
, and Co
2+
and remained stable in the presence of the surfactant Triton X-100. XylRc was also stimulated by organic solvents butanol (113%), ethanol (175%), isopropanol (176%), and acetone (185%). The
K
m
and
V
max
values for oat spelt and birchwood xylan were 6.7 ± 0.7 mg/mL, 2.3 ± 0.59 mg/mL, 446.7 ± 12.7 µmol/min/mg, and 173.7 ± 6.5 µmol/min/mg, respectively. XylRc was unaffected by different phenolic compounds: ferulic, tannic, cinnamic, benzoic, and coumaric acids at concentrations of 2.5–10 mg/mL. The results of saccharification of PSB showed that supplementation of a commercial enzymatic cocktail (Cellic® CTec2) with XylRc (1:1 w/v) led to an increase in the degree of synergism (DS) in total reducing sugar (1.28) and glucose released (1.05) compared to the control (Cellic® HTec2). In summary, XylRc demonstrated significant potential for applications in lignocellulosic biomass hydrolysis, making it an attractive alternative for producing xylooligosaccharides and xylose, which can serve as precursors for biofuel production.</description><identifier>ISSN: 2190-572X</identifier><identifier>ISSN: 2190-5738</identifier><identifier>EISSN: 2190-5738</identifier><identifier>DOI: 10.1007/s13205-023-03844-0</identifier><identifier>PMID: 38058364</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>acetone ; Agriculture ; Bagasse ; biobleaching ; Bioconversion ; Biofuels ; Bioinformatics ; biomass ; Biomaterials ; Biotechnology ; biotransformation ; Butanol ; calcium ; Calcium ions ; Cancer Research ; Carbon dioxide ; Chemistry ; Chemistry and Materials Science ; Cobalt ; Composting ; Electrophoresis ; endo-1,4-beta-xylanase ; Enzymes ; Ethanol ; family ; fuel production ; Fungi ; glucose ; Glycosidases ; Glycoside hydrolase ; glycosides ; heat tolerance ; hydrolysis ; isopropyl alcohol ; Lignocellulose ; Magnesium ; Molecular weight ; oats ; octoxynol ; Original ; Original Article ; Phenolic compounds ; Phenols ; Polyacrylamide ; polyacrylamide gel electrophoresis ; pulp and paper industry ; Rasamsonia ; Saccharification ; Sodium dodecyl sulfate ; Sodium lauryl sulfate ; Solid state fermentation ; Stem Cells ; Sugarcane ; sugarcane bagasse ; surfactants ; synergism ; temperature ; Thermophilic fungi ; Thin layer chromatography ; wheat bran ; Xylan ; Xylanase ; xylooligosaccharides ; xylose</subject><ispartof>3 Biotech, 2024-01, Vol.14 (1), p.3-3, Article 3</ispartof><rights>King Abdulaziz City for Science and Technology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c415t-9f5cdd2697c54731a389bfdc4721a470c7edfb65438fbe69c991ad2afe45f1293</cites><orcidid>0000-0002-3858-1467 ; 0000-0001-8256-9441 ; 0000-0002-5778-0322 ; 0000-0001-7501-5176 ; 0000-0002-9546-7177 ; 0000-0003-0033-8178 ; 0000-0002-0901-5722 ; 0000-0003-4015-7996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695910/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695910/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38058364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Franco, Daniel Guerra</creatorcontrib><creatorcontrib>de Almeida, Aline Pereira</creatorcontrib><creatorcontrib>Galeano, Rodrigo Mattos Silva</creatorcontrib><creatorcontrib>Vargas, Isabela Pavão</creatorcontrib><creatorcontrib>Masui, Douglas Chodi</creatorcontrib><creatorcontrib>Giannesi, Giovana Cristina</creatorcontrib><creatorcontrib>Ruller, Roberto</creatorcontrib><creatorcontrib>Zanoelo, Fabiana Fonseca</creatorcontrib><title>Exploring the potential of a new thermotolerant xylanase from Rasamsonia composticola (XylRc): production using agro-residues, biochemical studies, and application to sugarcane bagasse saccharification</title><title>3 Biotech</title><addtitle>3 Biotech</addtitle><addtitle>3 Biotech</addtitle><description>Xylanases from thermophilic fungi have a wide range of commercial applications in the bioconversion of lignocellulosic materials and biobleaching in the pulp and paper industry. In this study, an endoxylanase from the thermophilic fungus
Rasamsonia composticola
(XylRc) was produced using waste wheat bran and pretreated sugarcane bagasse (PSB) in solid-state fermentation. The enzyme was purified, biochemically characterized, and used for the saccharification of sugarcane bagasse. XylRc was purified 30.6-fold with a 22% yield. The analysis using sodium dodecyl sulphate–polyacrylamide gel electrophoresis revealed a molecular weight of 53 kDa, with optimal temperature and pH values of 80 °C and 5.5, respectively. Thin-layer chromatography suggests that the enzyme is an endoxylanase and belongs to the glycoside hydrolase 10 family. The enzyme was stimulated by the presence of K
+
, Ca
2+
, Mg
2+
, and Co
2+
and remained stable in the presence of the surfactant Triton X-100. XylRc was also stimulated by organic solvents butanol (113%), ethanol (175%), isopropanol (176%), and acetone (185%). The
K
m
and
V
max
values for oat spelt and birchwood xylan were 6.7 ± 0.7 mg/mL, 2.3 ± 0.59 mg/mL, 446.7 ± 12.7 µmol/min/mg, and 173.7 ± 6.5 µmol/min/mg, respectively. XylRc was unaffected by different phenolic compounds: ferulic, tannic, cinnamic, benzoic, and coumaric acids at concentrations of 2.5–10 mg/mL. The results of saccharification of PSB showed that supplementation of a commercial enzymatic cocktail (Cellic® CTec2) with XylRc (1:1 w/v) led to an increase in the degree of synergism (DS) in total reducing sugar (1.28) and glucose released (1.05) compared to the control (Cellic® HTec2). In summary, XylRc demonstrated significant potential for applications in lignocellulosic biomass hydrolysis, making it an attractive alternative for producing xylooligosaccharides and xylose, which can serve as precursors for biofuel production.</description><subject>acetone</subject><subject>Agriculture</subject><subject>Bagasse</subject><subject>biobleaching</subject><subject>Bioconversion</subject><subject>Biofuels</subject><subject>Bioinformatics</subject><subject>biomass</subject><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>biotransformation</subject><subject>Butanol</subject><subject>calcium</subject><subject>Calcium ions</subject><subject>Cancer Research</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Composting</subject><subject>Electrophoresis</subject><subject>endo-1,4-beta-xylanase</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>family</subject><subject>fuel production</subject><subject>Fungi</subject><subject>glucose</subject><subject>Glycosidases</subject><subject>Glycoside hydrolase</subject><subject>glycosides</subject><subject>heat tolerance</subject><subject>hydrolysis</subject><subject>isopropyl alcohol</subject><subject>Lignocellulose</subject><subject>Magnesium</subject><subject>Molecular weight</subject><subject>oats</subject><subject>octoxynol</subject><subject>Original</subject><subject>Original Article</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Polyacrylamide</subject><subject>polyacrylamide gel electrophoresis</subject><subject>pulp and paper industry</subject><subject>Rasamsonia</subject><subject>Saccharification</subject><subject>Sodium dodecyl sulfate</subject><subject>Sodium lauryl sulfate</subject><subject>Solid state fermentation</subject><subject>Stem Cells</subject><subject>Sugarcane</subject><subject>sugarcane bagasse</subject><subject>surfactants</subject><subject>synergism</subject><subject>temperature</subject><subject>Thermophilic fungi</subject><subject>Thin layer chromatography</subject><subject>wheat bran</subject><subject>Xylan</subject><subject>Xylanase</subject><subject>xylooligosaccharides</subject><subject>xylose</subject><issn>2190-572X</issn><issn>2190-5738</issn><issn>2190-5738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFktuK1TAUhosozjDOC3ghAW9GsJpD0zbeiAzjAQaEQWHuwmqadGdok5qkOvsRfSvT2dvt4UJzk7Dy5V8rP39RPCb4BcG4eRkJo5iXmLISs7aqSnyvOKZE4JI3rL1_ONPro-I0xhucFydcEPywOGIt5i2rq-Pi-8XtPPpg3YDSRqPZJ-2ShRF5gwA5_W0th8knP-oALqHb7QgOokYm-AldQYQpemcBKT_NPiar_Ajo7Ho7Xqlnr9AcfL-oZL1DS1y7wBB8GXS0_aLjc9RZrzZ6siq3jGnp7VoE1yOY5zFX714mj-IyQFDgNOpggJj7R1BqA8GaPfWoeGBgjPp0v58Un99efDp_X15-fPfh_M1lqSrCUykMV31Pa9EoXjWMAGtFZ3pVNZRA1WDV6N50Na9YazpdCyUEgZ6C0RU3hAp2Urze6c5LN-leZb8CjHIOdoKwlR6s_PPG2Y0c_FdJcC1W_7PC2V4h-C_ZhSQnG5Ues7HaL1EywlldV7zl_0VpKwRraFtXGX36F3rjl-CyFSvVcF43os4U3VEq-BiDNofBCZZrsOQuWDIHS94FS64DP_n9y4cnP2OUAbYD4rxGSYdfvf8h-wNWN98S</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Franco, Daniel Guerra</creator><creator>de Almeida, Aline Pereira</creator><creator>Galeano, Rodrigo Mattos Silva</creator><creator>Vargas, Isabela Pavão</creator><creator>Masui, Douglas Chodi</creator><creator>Giannesi, Giovana Cristina</creator><creator>Ruller, Roberto</creator><creator>Zanoelo, Fabiana Fonseca</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3858-1467</orcidid><orcidid>https://orcid.org/0000-0001-8256-9441</orcidid><orcidid>https://orcid.org/0000-0002-5778-0322</orcidid><orcidid>https://orcid.org/0000-0001-7501-5176</orcidid><orcidid>https://orcid.org/0000-0002-9546-7177</orcidid><orcidid>https://orcid.org/0000-0003-0033-8178</orcidid><orcidid>https://orcid.org/0000-0002-0901-5722</orcidid><orcidid>https://orcid.org/0000-0003-4015-7996</orcidid></search><sort><creationdate>20240101</creationdate><title>Exploring the potential of a new thermotolerant xylanase from Rasamsonia composticola (XylRc): production using agro-residues, biochemical studies, and application to sugarcane bagasse saccharification</title><author>Franco, Daniel Guerra ; de Almeida, Aline Pereira ; Galeano, Rodrigo Mattos Silva ; Vargas, Isabela Pavão ; Masui, Douglas Chodi ; Giannesi, Giovana Cristina ; Ruller, Roberto ; Zanoelo, Fabiana Fonseca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-9f5cdd2697c54731a389bfdc4721a470c7edfb65438fbe69c991ad2afe45f1293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acetone</topic><topic>Agriculture</topic><topic>Bagasse</topic><topic>biobleaching</topic><topic>Bioconversion</topic><topic>Biofuels</topic><topic>Bioinformatics</topic><topic>biomass</topic><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>biotransformation</topic><topic>Butanol</topic><topic>calcium</topic><topic>Calcium ions</topic><topic>Cancer Research</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Composting</topic><topic>Electrophoresis</topic><topic>endo-1,4-beta-xylanase</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>family</topic><topic>fuel production</topic><topic>Fungi</topic><topic>glucose</topic><topic>Glycosidases</topic><topic>Glycoside hydrolase</topic><topic>glycosides</topic><topic>heat tolerance</topic><topic>hydrolysis</topic><topic>isopropyl alcohol</topic><topic>Lignocellulose</topic><topic>Magnesium</topic><topic>Molecular weight</topic><topic>oats</topic><topic>octoxynol</topic><topic>Original</topic><topic>Original Article</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Polyacrylamide</topic><topic>polyacrylamide gel electrophoresis</topic><topic>pulp and paper industry</topic><topic>Rasamsonia</topic><topic>Saccharification</topic><topic>Sodium dodecyl sulfate</topic><topic>Sodium lauryl sulfate</topic><topic>Solid state fermentation</topic><topic>Stem Cells</topic><topic>Sugarcane</topic><topic>sugarcane bagasse</topic><topic>surfactants</topic><topic>synergism</topic><topic>temperature</topic><topic>Thermophilic fungi</topic><topic>Thin layer chromatography</topic><topic>wheat bran</topic><topic>Xylan</topic><topic>Xylanase</topic><topic>xylooligosaccharides</topic><topic>xylose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franco, Daniel Guerra</creatorcontrib><creatorcontrib>de Almeida, Aline Pereira</creatorcontrib><creatorcontrib>Galeano, Rodrigo Mattos Silva</creatorcontrib><creatorcontrib>Vargas, Isabela Pavão</creatorcontrib><creatorcontrib>Masui, Douglas Chodi</creatorcontrib><creatorcontrib>Giannesi, Giovana Cristina</creatorcontrib><creatorcontrib>Ruller, Roberto</creatorcontrib><creatorcontrib>Zanoelo, Fabiana Fonseca</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>3 Biotech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franco, Daniel Guerra</au><au>de Almeida, Aline Pereira</au><au>Galeano, Rodrigo Mattos Silva</au><au>Vargas, Isabela Pavão</au><au>Masui, Douglas Chodi</au><au>Giannesi, Giovana Cristina</au><au>Ruller, Roberto</au><au>Zanoelo, Fabiana Fonseca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the potential of a new thermotolerant xylanase from Rasamsonia composticola (XylRc): production using agro-residues, biochemical studies, and application to sugarcane bagasse saccharification</atitle><jtitle>3 Biotech</jtitle><stitle>3 Biotech</stitle><addtitle>3 Biotech</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>3</spage><epage>3</epage><pages>3-3</pages><artnum>3</artnum><issn>2190-572X</issn><issn>2190-5738</issn><eissn>2190-5738</eissn><abstract>Xylanases from thermophilic fungi have a wide range of commercial applications in the bioconversion of lignocellulosic materials and biobleaching in the pulp and paper industry. In this study, an endoxylanase from the thermophilic fungus
Rasamsonia composticola
(XylRc) was produced using waste wheat bran and pretreated sugarcane bagasse (PSB) in solid-state fermentation. The enzyme was purified, biochemically characterized, and used for the saccharification of sugarcane bagasse. XylRc was purified 30.6-fold with a 22% yield. The analysis using sodium dodecyl sulphate–polyacrylamide gel electrophoresis revealed a molecular weight of 53 kDa, with optimal temperature and pH values of 80 °C and 5.5, respectively. Thin-layer chromatography suggests that the enzyme is an endoxylanase and belongs to the glycoside hydrolase 10 family. The enzyme was stimulated by the presence of K
+
, Ca
2+
, Mg
2+
, and Co
2+
and remained stable in the presence of the surfactant Triton X-100. XylRc was also stimulated by organic solvents butanol (113%), ethanol (175%), isopropanol (176%), and acetone (185%). The
K
m
and
V
max
values for oat spelt and birchwood xylan were 6.7 ± 0.7 mg/mL, 2.3 ± 0.59 mg/mL, 446.7 ± 12.7 µmol/min/mg, and 173.7 ± 6.5 µmol/min/mg, respectively. XylRc was unaffected by different phenolic compounds: ferulic, tannic, cinnamic, benzoic, and coumaric acids at concentrations of 2.5–10 mg/mL. The results of saccharification of PSB showed that supplementation of a commercial enzymatic cocktail (Cellic® CTec2) with XylRc (1:1 w/v) led to an increase in the degree of synergism (DS) in total reducing sugar (1.28) and glucose released (1.05) compared to the control (Cellic® HTec2). In summary, XylRc demonstrated significant potential for applications in lignocellulosic biomass hydrolysis, making it an attractive alternative for producing xylooligosaccharides and xylose, which can serve as precursors for biofuel production.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38058364</pmid><doi>10.1007/s13205-023-03844-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3858-1467</orcidid><orcidid>https://orcid.org/0000-0001-8256-9441</orcidid><orcidid>https://orcid.org/0000-0002-5778-0322</orcidid><orcidid>https://orcid.org/0000-0001-7501-5176</orcidid><orcidid>https://orcid.org/0000-0002-9546-7177</orcidid><orcidid>https://orcid.org/0000-0003-0033-8178</orcidid><orcidid>https://orcid.org/0000-0002-0901-5722</orcidid><orcidid>https://orcid.org/0000-0003-4015-7996</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-572X |
ispartof | 3 Biotech, 2024-01, Vol.14 (1), p.3-3, Article 3 |
issn | 2190-572X 2190-5738 2190-5738 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10695910 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | acetone Agriculture Bagasse biobleaching Bioconversion Biofuels Bioinformatics biomass Biomaterials Biotechnology biotransformation Butanol calcium Calcium ions Cancer Research Carbon dioxide Chemistry Chemistry and Materials Science Cobalt Composting Electrophoresis endo-1,4-beta-xylanase Enzymes Ethanol family fuel production Fungi glucose Glycosidases Glycoside hydrolase glycosides heat tolerance hydrolysis isopropyl alcohol Lignocellulose Magnesium Molecular weight oats octoxynol Original Original Article Phenolic compounds Phenols Polyacrylamide polyacrylamide gel electrophoresis pulp and paper industry Rasamsonia Saccharification Sodium dodecyl sulfate Sodium lauryl sulfate Solid state fermentation Stem Cells Sugarcane sugarcane bagasse surfactants synergism temperature Thermophilic fungi Thin layer chromatography wheat bran Xylan Xylanase xylooligosaccharides xylose |
title | Exploring the potential of a new thermotolerant xylanase from Rasamsonia composticola (XylRc): production using agro-residues, biochemical studies, and application to sugarcane bagasse saccharification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20potential%20of%20a%20new%20thermotolerant%20xylanase%20from%20Rasamsonia%20composticola%20(XylRc):%20production%20using%20agro-residues,%20biochemical%20studies,%20and%20application%20to%20sugarcane%20bagasse%20saccharification&rft.jtitle=3%20Biotech&rft.au=Franco,%20Daniel%20Guerra&rft.date=2024-01-01&rft.volume=14&rft.issue=1&rft.spage=3&rft.epage=3&rft.pages=3-3&rft.artnum=3&rft.issn=2190-572X&rft.eissn=2190-5738&rft_id=info:doi/10.1007/s13205-023-03844-0&rft_dat=%3Cproquest_pubme%3E2897556796%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2897556796&rft_id=info:pmid/38058364&rfr_iscdi=true |