Clinical exome sequencing efficacy and phenotypic expansions involving anomalous pulmonary venous return
Anomalous pulmonary venous return (APVR) frequently occurs with other congenital heart defects (CHDs) or extra-cardiac anomalies. While some genetic causes have been identified, the optimal approach to genetic testing in individuals with APVR remains uncertain, and the etiology of most cases of APVR...
Gespeichert in:
Veröffentlicht in: | European journal of human genetics : EJHG 2023-12, Vol.31 (12), p.1430-1439 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1439 |
---|---|
container_issue | 12 |
container_start_page | 1430 |
container_title | European journal of human genetics : EJHG |
container_volume | 31 |
creator | Huth, Emily A Zhao, Xiaonan Owen, Nichole Luna, Pamela N Vogel, Ida Dorf, Inger L H Joss, Shelagh Clayton-Smith, Jill Parker, Michael J Louw, Jacoba J Gewillig, Marc Breckpot, Jeroen Kraus, Alison Sasaki, Erina Kini, Usha Burgess, Trent Tan, Tiong Y Armstrong, Ruth Neas, Katherine Ferrero, Giovanni B Brusco, Alfredo Kerstjens-Frederikse, Wihelmina S Rankin, Julia Helvaty, Lindsey R Landis, Benjamin J Geddes, Gabrielle C McBride, Kim L Ware, Stephanie M Shaw, Chad A Lalani, Seema R Rosenfeld, Jill A Scott, Daryl A |
description | Anomalous pulmonary venous return (APVR) frequently occurs with other congenital heart defects (CHDs) or extra-cardiac anomalies. While some genetic causes have been identified, the optimal approach to genetic testing in individuals with APVR remains uncertain, and the etiology of most cases of APVR is unclear. Here, we analyzed molecular data from 49 individuals to determine the diagnostic yield of clinical exome sequencing (ES) for non-isolated APVR. A definitive or probable diagnosis was made for 8 of those individuals yielding a diagnostic efficacy rate of 16.3%. We then analyzed molecular data from 62 individuals with APVR accrued from three databases to identify novel APVR genes. Based on data from this analysis, published case reports, mouse models, and/or similarity to known APVR genes as revealed by a machine learning algorithm, we identified 3 genes-EFTUD2, NAA15, and NKX2-1-for which there is sufficient evidence to support phenotypic expansion to include APVR. We also provide evidence that 3 recurrent copy number variants contribute to the development of APVR: proximal 1q21.1 microdeletions involving RBM8A and PDZK1, recurrent BP1-BP2 15q11.2 deletions, and central 22q11.2 deletions involving CRKL. Our results suggest that ES and chromosomal microarray analysis (or genome sequencing) should be considered for individuals with non-isolated APVR for whom a genetic etiology has not been identified, and that genetic testing to identify an independent genetic etiology of APVR is not warranted in individuals with EFTUD2-, NAA15-, and NKX2-1-related disorders. |
doi_str_mv | 10.1038/s41431-023-01451-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10689790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900969645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-7af0efcbcca023e0cb28d79e56be44761b57fa97ebc60f76d4f8803bf7bc4afd3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0Eoh_wBzigSFy4BOzY8ccJoRVQpEpc4Gw5zrjryrFDnKy6_54pWyrgZMvzzGgev4S8YvQdo1y_r4IJzlra8ZYy0bNWPCHnTCjZ9oLrp3inTLdCM35GLmq9pUgpxZ6TM66k4oZ352S_SzFH71IDd2WCpsLPDbKP-aaBELDgj43LYzPvIZf1OEeP4OxyjSXXJuZDSYd72OUyuVS22sxbmkp2y7E5YAs-LLBuS35BngWXKrx8OC_Jj8-fvu-u2utvX77uPl63nmu1tsoFCsEP3jv0AuqHTo_KQC8HEKjGhl4FZxQMXtKg5CiC1pQPQQ1euDDyS_LhNHfehglGD3ldXLLzEifcyRYX7b-VHPf2phwso1IbZShOePswYSn4GXW1U6weUnIZ0Md2WnbMmE5pRN_8h94WdEU_2xlKjTRS9Eh1J8ovpdYFwuM2jNr7JO0pSYvG9neSVmDT6789Hlv-RMd_AeFcniY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900969645</pqid></control><display><type>article</type><title>Clinical exome sequencing efficacy and phenotypic expansions involving anomalous pulmonary venous return</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Huth, Emily A ; Zhao, Xiaonan ; Owen, Nichole ; Luna, Pamela N ; Vogel, Ida ; Dorf, Inger L H ; Joss, Shelagh ; Clayton-Smith, Jill ; Parker, Michael J ; Louw, Jacoba J ; Gewillig, Marc ; Breckpot, Jeroen ; Kraus, Alison ; Sasaki, Erina ; Kini, Usha ; Burgess, Trent ; Tan, Tiong Y ; Armstrong, Ruth ; Neas, Katherine ; Ferrero, Giovanni B ; Brusco, Alfredo ; Kerstjens-Frederikse, Wihelmina S ; Rankin, Julia ; Helvaty, Lindsey R ; Landis, Benjamin J ; Geddes, Gabrielle C ; McBride, Kim L ; Ware, Stephanie M ; Shaw, Chad A ; Lalani, Seema R ; Rosenfeld, Jill A ; Scott, Daryl A</creator><creatorcontrib>Huth, Emily A ; Zhao, Xiaonan ; Owen, Nichole ; Luna, Pamela N ; Vogel, Ida ; Dorf, Inger L H ; Joss, Shelagh ; Clayton-Smith, Jill ; Parker, Michael J ; Louw, Jacoba J ; Gewillig, Marc ; Breckpot, Jeroen ; Kraus, Alison ; Sasaki, Erina ; Kini, Usha ; Burgess, Trent ; Tan, Tiong Y ; Armstrong, Ruth ; Neas, Katherine ; Ferrero, Giovanni B ; Brusco, Alfredo ; Kerstjens-Frederikse, Wihelmina S ; Rankin, Julia ; Helvaty, Lindsey R ; Landis, Benjamin J ; Geddes, Gabrielle C ; McBride, Kim L ; Ware, Stephanie M ; Shaw, Chad A ; Lalani, Seema R ; Rosenfeld, Jill A ; Scott, Daryl A</creatorcontrib><description>Anomalous pulmonary venous return (APVR) frequently occurs with other congenital heart defects (CHDs) or extra-cardiac anomalies. While some genetic causes have been identified, the optimal approach to genetic testing in individuals with APVR remains uncertain, and the etiology of most cases of APVR is unclear. Here, we analyzed molecular data from 49 individuals to determine the diagnostic yield of clinical exome sequencing (ES) for non-isolated APVR. A definitive or probable diagnosis was made for 8 of those individuals yielding a diagnostic efficacy rate of 16.3%. We then analyzed molecular data from 62 individuals with APVR accrued from three databases to identify novel APVR genes. Based on data from this analysis, published case reports, mouse models, and/or similarity to known APVR genes as revealed by a machine learning algorithm, we identified 3 genes-EFTUD2, NAA15, and NKX2-1-for which there is sufficient evidence to support phenotypic expansion to include APVR. We also provide evidence that 3 recurrent copy number variants contribute to the development of APVR: proximal 1q21.1 microdeletions involving RBM8A and PDZK1, recurrent BP1-BP2 15q11.2 deletions, and central 22q11.2 deletions involving CRKL. Our results suggest that ES and chromosomal microarray analysis (or genome sequencing) should be considered for individuals with non-isolated APVR for whom a genetic etiology has not been identified, and that genetic testing to identify an independent genetic etiology of APVR is not warranted in individuals with EFTUD2-, NAA15-, and NKX2-1-related disorders.</description><identifier>ISSN: 1018-4813</identifier><identifier>ISSN: 1476-5438</identifier><identifier>EISSN: 1476-5438</identifier><identifier>DOI: 10.1038/s41431-023-01451-4</identifier><identifier>PMID: 37673932</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Abnormalities, Multiple - genetics ; Animal models ; Animals ; Case reports ; Chromosome Deletion ; Copy number ; Etiology ; Exome Sequencing ; Genetic screening ; Genetic Testing ; Genomes ; Heart Defects, Congenital - diagnosis ; Heart Defects, Congenital - genetics ; Mice ; RNA-Binding Proteins - genetics ; Scimitar Syndrome - genetics ; Thyroid transcription factor 1</subject><ispartof>European journal of human genetics : EJHG, 2023-12, Vol.31 (12), p.1430-1439</ispartof><rights>2023. The Author(s), under exclusive licence to European Society of Human Genetics.</rights><rights>The Author(s), under exclusive licence to European Society of Human Genetics 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-7af0efcbcca023e0cb28d79e56be44761b57fa97ebc60f76d4f8803bf7bc4afd3</citedby><cites>FETCH-LOGICAL-c387t-7af0efcbcca023e0cb28d79e56be44761b57fa97ebc60f76d4f8803bf7bc4afd3</cites><orcidid>0000-0003-2528-2203 ; 0000-0001-8455-7778 ; 0000-0003-2077-4997 ; 0000-0002-8318-7231 ; 0000-0003-1460-5169 ; 0000-0002-1125-0393 ; 0000-0001-5664-7987 ; 0000-0002-4595-5922 ; 0009-0007-0521-471X ; 0000-0002-0734-5154 ; 0000-0002-4887-9726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689790/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689790/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37673932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huth, Emily A</creatorcontrib><creatorcontrib>Zhao, Xiaonan</creatorcontrib><creatorcontrib>Owen, Nichole</creatorcontrib><creatorcontrib>Luna, Pamela N</creatorcontrib><creatorcontrib>Vogel, Ida</creatorcontrib><creatorcontrib>Dorf, Inger L H</creatorcontrib><creatorcontrib>Joss, Shelagh</creatorcontrib><creatorcontrib>Clayton-Smith, Jill</creatorcontrib><creatorcontrib>Parker, Michael J</creatorcontrib><creatorcontrib>Louw, Jacoba J</creatorcontrib><creatorcontrib>Gewillig, Marc</creatorcontrib><creatorcontrib>Breckpot, Jeroen</creatorcontrib><creatorcontrib>Kraus, Alison</creatorcontrib><creatorcontrib>Sasaki, Erina</creatorcontrib><creatorcontrib>Kini, Usha</creatorcontrib><creatorcontrib>Burgess, Trent</creatorcontrib><creatorcontrib>Tan, Tiong Y</creatorcontrib><creatorcontrib>Armstrong, Ruth</creatorcontrib><creatorcontrib>Neas, Katherine</creatorcontrib><creatorcontrib>Ferrero, Giovanni B</creatorcontrib><creatorcontrib>Brusco, Alfredo</creatorcontrib><creatorcontrib>Kerstjens-Frederikse, Wihelmina S</creatorcontrib><creatorcontrib>Rankin, Julia</creatorcontrib><creatorcontrib>Helvaty, Lindsey R</creatorcontrib><creatorcontrib>Landis, Benjamin J</creatorcontrib><creatorcontrib>Geddes, Gabrielle C</creatorcontrib><creatorcontrib>McBride, Kim L</creatorcontrib><creatorcontrib>Ware, Stephanie M</creatorcontrib><creatorcontrib>Shaw, Chad A</creatorcontrib><creatorcontrib>Lalani, Seema R</creatorcontrib><creatorcontrib>Rosenfeld, Jill A</creatorcontrib><creatorcontrib>Scott, Daryl A</creatorcontrib><title>Clinical exome sequencing efficacy and phenotypic expansions involving anomalous pulmonary venous return</title><title>European journal of human genetics : EJHG</title><addtitle>Eur J Hum Genet</addtitle><description>Anomalous pulmonary venous return (APVR) frequently occurs with other congenital heart defects (CHDs) or extra-cardiac anomalies. While some genetic causes have been identified, the optimal approach to genetic testing in individuals with APVR remains uncertain, and the etiology of most cases of APVR is unclear. Here, we analyzed molecular data from 49 individuals to determine the diagnostic yield of clinical exome sequencing (ES) for non-isolated APVR. A definitive or probable diagnosis was made for 8 of those individuals yielding a diagnostic efficacy rate of 16.3%. We then analyzed molecular data from 62 individuals with APVR accrued from three databases to identify novel APVR genes. Based on data from this analysis, published case reports, mouse models, and/or similarity to known APVR genes as revealed by a machine learning algorithm, we identified 3 genes-EFTUD2, NAA15, and NKX2-1-for which there is sufficient evidence to support phenotypic expansion to include APVR. We also provide evidence that 3 recurrent copy number variants contribute to the development of APVR: proximal 1q21.1 microdeletions involving RBM8A and PDZK1, recurrent BP1-BP2 15q11.2 deletions, and central 22q11.2 deletions involving CRKL. Our results suggest that ES and chromosomal microarray analysis (or genome sequencing) should be considered for individuals with non-isolated APVR for whom a genetic etiology has not been identified, and that genetic testing to identify an independent genetic etiology of APVR is not warranted in individuals with EFTUD2-, NAA15-, and NKX2-1-related disorders.</description><subject>Abnormalities, Multiple - genetics</subject><subject>Animal models</subject><subject>Animals</subject><subject>Case reports</subject><subject>Chromosome Deletion</subject><subject>Copy number</subject><subject>Etiology</subject><subject>Exome Sequencing</subject><subject>Genetic screening</subject><subject>Genetic Testing</subject><subject>Genomes</subject><subject>Heart Defects, Congenital - diagnosis</subject><subject>Heart Defects, Congenital - genetics</subject><subject>Mice</subject><subject>RNA-Binding Proteins - genetics</subject><subject>Scimitar Syndrome - genetics</subject><subject>Thyroid transcription factor 1</subject><issn>1018-4813</issn><issn>1476-5438</issn><issn>1476-5438</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkU1v1DAQhi0Eoh_wBzigSFy4BOzY8ccJoRVQpEpc4Gw5zrjryrFDnKy6_54pWyrgZMvzzGgev4S8YvQdo1y_r4IJzlra8ZYy0bNWPCHnTCjZ9oLrp3inTLdCM35GLmq9pUgpxZ6TM66k4oZ352S_SzFH71IDd2WCpsLPDbKP-aaBELDgj43LYzPvIZf1OEeP4OxyjSXXJuZDSYd72OUyuVS22sxbmkp2y7E5YAs-LLBuS35BngWXKrx8OC_Jj8-fvu-u2utvX77uPl63nmu1tsoFCsEP3jv0AuqHTo_KQC8HEKjGhl4FZxQMXtKg5CiC1pQPQQ1euDDyS_LhNHfehglGD3ldXLLzEifcyRYX7b-VHPf2phwso1IbZShOePswYSn4GXW1U6weUnIZ0Md2WnbMmE5pRN_8h94WdEU_2xlKjTRS9Eh1J8ovpdYFwuM2jNr7JO0pSYvG9neSVmDT6789Hlv-RMd_AeFcniY</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Huth, Emily A</creator><creator>Zhao, Xiaonan</creator><creator>Owen, Nichole</creator><creator>Luna, Pamela N</creator><creator>Vogel, Ida</creator><creator>Dorf, Inger L H</creator><creator>Joss, Shelagh</creator><creator>Clayton-Smith, Jill</creator><creator>Parker, Michael J</creator><creator>Louw, Jacoba J</creator><creator>Gewillig, Marc</creator><creator>Breckpot, Jeroen</creator><creator>Kraus, Alison</creator><creator>Sasaki, Erina</creator><creator>Kini, Usha</creator><creator>Burgess, Trent</creator><creator>Tan, Tiong Y</creator><creator>Armstrong, Ruth</creator><creator>Neas, Katherine</creator><creator>Ferrero, Giovanni B</creator><creator>Brusco, Alfredo</creator><creator>Kerstjens-Frederikse, Wihelmina S</creator><creator>Rankin, Julia</creator><creator>Helvaty, Lindsey R</creator><creator>Landis, Benjamin J</creator><creator>Geddes, Gabrielle C</creator><creator>McBride, Kim L</creator><creator>Ware, Stephanie M</creator><creator>Shaw, Chad A</creator><creator>Lalani, Seema R</creator><creator>Rosenfeld, Jill A</creator><creator>Scott, Daryl A</creator><general>Nature Publishing Group</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2528-2203</orcidid><orcidid>https://orcid.org/0000-0001-8455-7778</orcidid><orcidid>https://orcid.org/0000-0003-2077-4997</orcidid><orcidid>https://orcid.org/0000-0002-8318-7231</orcidid><orcidid>https://orcid.org/0000-0003-1460-5169</orcidid><orcidid>https://orcid.org/0000-0002-1125-0393</orcidid><orcidid>https://orcid.org/0000-0001-5664-7987</orcidid><orcidid>https://orcid.org/0000-0002-4595-5922</orcidid><orcidid>https://orcid.org/0009-0007-0521-471X</orcidid><orcidid>https://orcid.org/0000-0002-0734-5154</orcidid><orcidid>https://orcid.org/0000-0002-4887-9726</orcidid></search><sort><creationdate>20231201</creationdate><title>Clinical exome sequencing efficacy and phenotypic expansions involving anomalous pulmonary venous return</title><author>Huth, Emily A ; Zhao, Xiaonan ; Owen, Nichole ; Luna, Pamela N ; Vogel, Ida ; Dorf, Inger L H ; Joss, Shelagh ; Clayton-Smith, Jill ; Parker, Michael J ; Louw, Jacoba J ; Gewillig, Marc ; Breckpot, Jeroen ; Kraus, Alison ; Sasaki, Erina ; Kini, Usha ; Burgess, Trent ; Tan, Tiong Y ; Armstrong, Ruth ; Neas, Katherine ; Ferrero, Giovanni B ; Brusco, Alfredo ; Kerstjens-Frederikse, Wihelmina S ; Rankin, Julia ; Helvaty, Lindsey R ; Landis, Benjamin J ; Geddes, Gabrielle C ; McBride, Kim L ; Ware, Stephanie M ; Shaw, Chad A ; Lalani, Seema R ; Rosenfeld, Jill A ; Scott, Daryl A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-7af0efcbcca023e0cb28d79e56be44761b57fa97ebc60f76d4f8803bf7bc4afd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abnormalities, Multiple - genetics</topic><topic>Animal models</topic><topic>Animals</topic><topic>Case reports</topic><topic>Chromosome Deletion</topic><topic>Copy number</topic><topic>Etiology</topic><topic>Exome Sequencing</topic><topic>Genetic screening</topic><topic>Genetic Testing</topic><topic>Genomes</topic><topic>Heart Defects, Congenital - diagnosis</topic><topic>Heart Defects, Congenital - genetics</topic><topic>Mice</topic><topic>RNA-Binding Proteins - genetics</topic><topic>Scimitar Syndrome - genetics</topic><topic>Thyroid transcription factor 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huth, Emily A</creatorcontrib><creatorcontrib>Zhao, Xiaonan</creatorcontrib><creatorcontrib>Owen, Nichole</creatorcontrib><creatorcontrib>Luna, Pamela N</creatorcontrib><creatorcontrib>Vogel, Ida</creatorcontrib><creatorcontrib>Dorf, Inger L H</creatorcontrib><creatorcontrib>Joss, Shelagh</creatorcontrib><creatorcontrib>Clayton-Smith, Jill</creatorcontrib><creatorcontrib>Parker, Michael J</creatorcontrib><creatorcontrib>Louw, Jacoba J</creatorcontrib><creatorcontrib>Gewillig, Marc</creatorcontrib><creatorcontrib>Breckpot, Jeroen</creatorcontrib><creatorcontrib>Kraus, Alison</creatorcontrib><creatorcontrib>Sasaki, Erina</creatorcontrib><creatorcontrib>Kini, Usha</creatorcontrib><creatorcontrib>Burgess, Trent</creatorcontrib><creatorcontrib>Tan, Tiong Y</creatorcontrib><creatorcontrib>Armstrong, Ruth</creatorcontrib><creatorcontrib>Neas, Katherine</creatorcontrib><creatorcontrib>Ferrero, Giovanni B</creatorcontrib><creatorcontrib>Brusco, Alfredo</creatorcontrib><creatorcontrib>Kerstjens-Frederikse, Wihelmina S</creatorcontrib><creatorcontrib>Rankin, Julia</creatorcontrib><creatorcontrib>Helvaty, Lindsey R</creatorcontrib><creatorcontrib>Landis, Benjamin J</creatorcontrib><creatorcontrib>Geddes, Gabrielle C</creatorcontrib><creatorcontrib>McBride, Kim L</creatorcontrib><creatorcontrib>Ware, Stephanie M</creatorcontrib><creatorcontrib>Shaw, Chad A</creatorcontrib><creatorcontrib>Lalani, Seema R</creatorcontrib><creatorcontrib>Rosenfeld, Jill A</creatorcontrib><creatorcontrib>Scott, Daryl A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of human genetics : EJHG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huth, Emily A</au><au>Zhao, Xiaonan</au><au>Owen, Nichole</au><au>Luna, Pamela N</au><au>Vogel, Ida</au><au>Dorf, Inger L H</au><au>Joss, Shelagh</au><au>Clayton-Smith, Jill</au><au>Parker, Michael J</au><au>Louw, Jacoba J</au><au>Gewillig, Marc</au><au>Breckpot, Jeroen</au><au>Kraus, Alison</au><au>Sasaki, Erina</au><au>Kini, Usha</au><au>Burgess, Trent</au><au>Tan, Tiong Y</au><au>Armstrong, Ruth</au><au>Neas, Katherine</au><au>Ferrero, Giovanni B</au><au>Brusco, Alfredo</au><au>Kerstjens-Frederikse, Wihelmina S</au><au>Rankin, Julia</au><au>Helvaty, Lindsey R</au><au>Landis, Benjamin J</au><au>Geddes, Gabrielle C</au><au>McBride, Kim L</au><au>Ware, Stephanie M</au><au>Shaw, Chad A</au><au>Lalani, Seema R</au><au>Rosenfeld, Jill A</au><au>Scott, Daryl A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical exome sequencing efficacy and phenotypic expansions involving anomalous pulmonary venous return</atitle><jtitle>European journal of human genetics : EJHG</jtitle><addtitle>Eur J Hum Genet</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>31</volume><issue>12</issue><spage>1430</spage><epage>1439</epage><pages>1430-1439</pages><issn>1018-4813</issn><issn>1476-5438</issn><eissn>1476-5438</eissn><abstract>Anomalous pulmonary venous return (APVR) frequently occurs with other congenital heart defects (CHDs) or extra-cardiac anomalies. While some genetic causes have been identified, the optimal approach to genetic testing in individuals with APVR remains uncertain, and the etiology of most cases of APVR is unclear. Here, we analyzed molecular data from 49 individuals to determine the diagnostic yield of clinical exome sequencing (ES) for non-isolated APVR. A definitive or probable diagnosis was made for 8 of those individuals yielding a diagnostic efficacy rate of 16.3%. We then analyzed molecular data from 62 individuals with APVR accrued from three databases to identify novel APVR genes. Based on data from this analysis, published case reports, mouse models, and/or similarity to known APVR genes as revealed by a machine learning algorithm, we identified 3 genes-EFTUD2, NAA15, and NKX2-1-for which there is sufficient evidence to support phenotypic expansion to include APVR. We also provide evidence that 3 recurrent copy number variants contribute to the development of APVR: proximal 1q21.1 microdeletions involving RBM8A and PDZK1, recurrent BP1-BP2 15q11.2 deletions, and central 22q11.2 deletions involving CRKL. Our results suggest that ES and chromosomal microarray analysis (or genome sequencing) should be considered for individuals with non-isolated APVR for whom a genetic etiology has not been identified, and that genetic testing to identify an independent genetic etiology of APVR is not warranted in individuals with EFTUD2-, NAA15-, and NKX2-1-related disorders.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>37673932</pmid><doi>10.1038/s41431-023-01451-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2528-2203</orcidid><orcidid>https://orcid.org/0000-0001-8455-7778</orcidid><orcidid>https://orcid.org/0000-0003-2077-4997</orcidid><orcidid>https://orcid.org/0000-0002-8318-7231</orcidid><orcidid>https://orcid.org/0000-0003-1460-5169</orcidid><orcidid>https://orcid.org/0000-0002-1125-0393</orcidid><orcidid>https://orcid.org/0000-0001-5664-7987</orcidid><orcidid>https://orcid.org/0000-0002-4595-5922</orcidid><orcidid>https://orcid.org/0009-0007-0521-471X</orcidid><orcidid>https://orcid.org/0000-0002-0734-5154</orcidid><orcidid>https://orcid.org/0000-0002-4887-9726</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1018-4813 |
ispartof | European journal of human genetics : EJHG, 2023-12, Vol.31 (12), p.1430-1439 |
issn | 1018-4813 1476-5438 1476-5438 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10689790 |
source | MEDLINE; Springer Nature - Complete Springer Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Abnormalities, Multiple - genetics Animal models Animals Case reports Chromosome Deletion Copy number Etiology Exome Sequencing Genetic screening Genetic Testing Genomes Heart Defects, Congenital - diagnosis Heart Defects, Congenital - genetics Mice RNA-Binding Proteins - genetics Scimitar Syndrome - genetics Thyroid transcription factor 1 |
title | Clinical exome sequencing efficacy and phenotypic expansions involving anomalous pulmonary venous return |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20exome%20sequencing%20efficacy%20and%20phenotypic%20expansions%20involving%20anomalous%20pulmonary%20venous%20return&rft.jtitle=European%20journal%20of%20human%20genetics%20:%20EJHG&rft.au=Huth,%20Emily%20A&rft.date=2023-12-01&rft.volume=31&rft.issue=12&rft.spage=1430&rft.epage=1439&rft.pages=1430-1439&rft.issn=1018-4813&rft.eissn=1476-5438&rft_id=info:doi/10.1038/s41431-023-01451-4&rft_dat=%3Cproquest_pubme%3E2900969645%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900969645&rft_id=info:pmid/37673932&rfr_iscdi=true |