One-wire reconfigurable and damage-tolerant sensor matrix inspired by the auditory tonotopy

Sensor matrices are essential in various fields including robotics, aviation, health care, and industrial machinery. However, conventional sensor matrix systems often face challenges such as limited reconfigurability, complex wiring, and poor robustness. To address these issues, we introduce a one-w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2023-12, Vol.9 (48), p.eadi6633-eadi6633
Hauptverfasser: Long, Zhihe, Lin, Weikang, Li, Pengyu, Wang, Biao, Pan, Qiqi, Yang, Xiaodan, Lee, Wang Wei, Chung, Henry Shu-Hung, Yang, Zhengbao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sensor matrices are essential in various fields including robotics, aviation, health care, and industrial machinery. However, conventional sensor matrix systems often face challenges such as limited reconfigurability, complex wiring, and poor robustness. To address these issues, we introduce a one-wire reconfigurable sensor matrix that is capable of conforming to three-dimensional curved surfaces and resistant to cross-talk and fractures. Our frequency-located technology, inspired by the auditory tonotopy, reduces the number of output wires from row × column to a single wire by superimposing the signals of all sensor units with unique frequency identities. The sensor units are connected through a shared redundant network, giving great freedom for reconfiguration and facilitating quick repairs. The one-wire frequency-located technology is demonstrated in two applications-a pressure sensor matrix and a pressure-temperature multimodal sensor matrix. In addition, we also show its potential in monitoring strain distribution in an airplane wing, emphasizing its advantages in simplified wiring and improved robustness.
ISSN:2375-2548
2375-2548
DOI:10.1126/SCIADV.ADI6633