Broadband Forward Light Scattering by Architectural Design of Core–Shell Silicon Particles

A goal in the field of nanoscale optics is the fabrication of nanostructures with strong directional light scattering at visible frequencies. Here, the synthesis of Mie‐resonant core–shell particles with overlapping electric and magnetic dipole resonances in the visible spectrum is demonstrated. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-06, Vol.31 (26), p.n/a
Hauptverfasser: De Marco, Maria Letizia, Jiang, Taizhi, Fang, Jie, Lacomme, Sabrina, Zheng, Yuebing, Baron, Alexandre, Korgel, Brian A., Barois, Philippe, Drisko, Glenna L., Aymonier, Cyril
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 26
container_start_page
container_title Advanced functional materials
container_volume 31
creator De Marco, Maria Letizia
Jiang, Taizhi
Fang, Jie
Lacomme, Sabrina
Zheng, Yuebing
Baron, Alexandre
Korgel, Brian A.
Barois, Philippe
Drisko, Glenna L.
Aymonier, Cyril
description A goal in the field of nanoscale optics is the fabrication of nanostructures with strong directional light scattering at visible frequencies. Here, the synthesis of Mie‐resonant core–shell particles with overlapping electric and magnetic dipole resonances in the visible spectrum is demonstrated. The core consists of silicon surrounded by a lower index silicon oxynitride (SiOxNy) shell of an adjustable thickness. Optical spectroscopies coupled to Mie theory calculations give the first experimental evidence that the relative position and intensity of the magnetic and electric dipole resonances are tuned by changing the core–shell architecture. Specifically, coating a high‐index particle with a low‐index shell coalesces the dipoles, while maintaining a high scattering efficiency, thus generating broadband forward scattering. This synthetic strategy opens a route toward metamaterial fabrication with unprecedented control over visible light manipulation. Core–shell particles composed of Si@SiOxNy are produced in a supercritical reactor. These particles demonstrate broadband, intense forward light scattering superior to that of a simple silicon particle. Experiment and simulation show that the core–shell design is an excellent way to fine tune the resonant properties of the particle, giving access to efficient Huygens sources.
doi_str_mv 10.1002/adfm.202100915
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10686547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895711375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4805-f6204f36058a062e5dfe57d24edde62114c6014a9d0d5494a0739f31aa53e8403</originalsourceid><addsrcrecordid>eNqFkc9uEzEQxlcIJErplbMlLnBIGP_fPaGQEooUBFJaqQcky7Fns64262LvtsqNd-ANeRI2ShVEL5w89vy-z6P5iuIVhSkFYO-sr7dTBmy8VFQ-KU6oomrCgZVPjzW9fl68yPkGgGrNxUnx_UOK1q9t58kipnubPFmGTdOTlbN9jyl0G7LekVlyTejR9UOyLTnHHDYdiTWZx4S_f_5aNdi2ZBXa4GJHvtnUB9diflk8q22b8ezhPC2uFh8v5xeT5ddPn-ez5cSJEuSkVgxEzRXI0oJiKH2NUnsm0HtUjFLhFFBhKw9eikpY0LyqObVWciwF8NPi_cH3dlhv0Tvs-nFMc5vC1qadiTaYfztdaMwm3hkKqlRS6NHh7cGheaS7mC3N_g04LcsK5B0d2TcPv6X4Y8Dcm23IblyA7TAO2bCykppSruWIvn6E3sQhdeMuDJNCiFJrtqemB8qlmHPC-jgBBbOP1uyjNcdoR0F1ENyHFnf_oc3sfPHlr_YPHZyoAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544487725</pqid></control><display><type>article</type><title>Broadband Forward Light Scattering by Architectural Design of Core–Shell Silicon Particles</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>De Marco, Maria Letizia ; Jiang, Taizhi ; Fang, Jie ; Lacomme, Sabrina ; Zheng, Yuebing ; Baron, Alexandre ; Korgel, Brian A. ; Barois, Philippe ; Drisko, Glenna L. ; Aymonier, Cyril</creator><creatorcontrib>De Marco, Maria Letizia ; Jiang, Taizhi ; Fang, Jie ; Lacomme, Sabrina ; Zheng, Yuebing ; Baron, Alexandre ; Korgel, Brian A. ; Barois, Philippe ; Drisko, Glenna L. ; Aymonier, Cyril</creatorcontrib><description>A goal in the field of nanoscale optics is the fabrication of nanostructures with strong directional light scattering at visible frequencies. Here, the synthesis of Mie‐resonant core–shell particles with overlapping electric and magnetic dipole resonances in the visible spectrum is demonstrated. The core consists of silicon surrounded by a lower index silicon oxynitride (SiOxNy) shell of an adjustable thickness. Optical spectroscopies coupled to Mie theory calculations give the first experimental evidence that the relative position and intensity of the magnetic and electric dipole resonances are tuned by changing the core–shell architecture. Specifically, coating a high‐index particle with a low‐index shell coalesces the dipoles, while maintaining a high scattering efficiency, thus generating broadband forward scattering. This synthetic strategy opens a route toward metamaterial fabrication with unprecedented control over visible light manipulation. Core–shell particles composed of Si@SiOxNy are produced in a supercritical reactor. These particles demonstrate broadband, intense forward light scattering superior to that of a simple silicon particle. Experiment and simulation show that the core–shell design is an excellent way to fine tune the resonant properties of the particle, giving access to efficient Huygens sources.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202100915</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Broadband ; Chemical Sciences ; Core-shell particles ; directional light scattering ; Electric dipoles ; Forward scattering ; Huygens sources ; Light scattering ; Magnetic dipoles ; Magnetic resonance ; Material chemistry ; Materials science ; Metamaterials ; Mie scattering ; Silicon oxynitride ; visible light silicon resonators ; Visible spectrum</subject><ispartof>Advanced functional materials, 2021-06, Vol.31 (26), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4805-f6204f36058a062e5dfe57d24edde62114c6014a9d0d5494a0739f31aa53e8403</citedby><cites>FETCH-LOGICAL-c4805-f6204f36058a062e5dfe57d24edde62114c6014a9d0d5494a0739f31aa53e8403</cites><orcidid>0000-0003-1995-6187 ; 0000-0003-1775-0716 ; 0000-0002-0793-9323 ; 0000-0001-6469-9736 ; 0000-0002-0332-9579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202100915$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202100915$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03188905$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>De Marco, Maria Letizia</creatorcontrib><creatorcontrib>Jiang, Taizhi</creatorcontrib><creatorcontrib>Fang, Jie</creatorcontrib><creatorcontrib>Lacomme, Sabrina</creatorcontrib><creatorcontrib>Zheng, Yuebing</creatorcontrib><creatorcontrib>Baron, Alexandre</creatorcontrib><creatorcontrib>Korgel, Brian A.</creatorcontrib><creatorcontrib>Barois, Philippe</creatorcontrib><creatorcontrib>Drisko, Glenna L.</creatorcontrib><creatorcontrib>Aymonier, Cyril</creatorcontrib><title>Broadband Forward Light Scattering by Architectural Design of Core–Shell Silicon Particles</title><title>Advanced functional materials</title><description>A goal in the field of nanoscale optics is the fabrication of nanostructures with strong directional light scattering at visible frequencies. Here, the synthesis of Mie‐resonant core–shell particles with overlapping electric and magnetic dipole resonances in the visible spectrum is demonstrated. The core consists of silicon surrounded by a lower index silicon oxynitride (SiOxNy) shell of an adjustable thickness. Optical spectroscopies coupled to Mie theory calculations give the first experimental evidence that the relative position and intensity of the magnetic and electric dipole resonances are tuned by changing the core–shell architecture. Specifically, coating a high‐index particle with a low‐index shell coalesces the dipoles, while maintaining a high scattering efficiency, thus generating broadband forward scattering. This synthetic strategy opens a route toward metamaterial fabrication with unprecedented control over visible light manipulation. Core–shell particles composed of Si@SiOxNy are produced in a supercritical reactor. These particles demonstrate broadband, intense forward light scattering superior to that of a simple silicon particle. Experiment and simulation show that the core–shell design is an excellent way to fine tune the resonant properties of the particle, giving access to efficient Huygens sources.</description><subject>Broadband</subject><subject>Chemical Sciences</subject><subject>Core-shell particles</subject><subject>directional light scattering</subject><subject>Electric dipoles</subject><subject>Forward scattering</subject><subject>Huygens sources</subject><subject>Light scattering</subject><subject>Magnetic dipoles</subject><subject>Magnetic resonance</subject><subject>Material chemistry</subject><subject>Materials science</subject><subject>Metamaterials</subject><subject>Mie scattering</subject><subject>Silicon oxynitride</subject><subject>visible light silicon resonators</subject><subject>Visible spectrum</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc9uEzEQxlcIJErplbMlLnBIGP_fPaGQEooUBFJaqQcky7Fns64262LvtsqNd-ANeRI2ShVEL5w89vy-z6P5iuIVhSkFYO-sr7dTBmy8VFQ-KU6oomrCgZVPjzW9fl68yPkGgGrNxUnx_UOK1q9t58kipnubPFmGTdOTlbN9jyl0G7LekVlyTejR9UOyLTnHHDYdiTWZx4S_f_5aNdi2ZBXa4GJHvtnUB9diflk8q22b8ezhPC2uFh8v5xeT5ddPn-ez5cSJEuSkVgxEzRXI0oJiKH2NUnsm0HtUjFLhFFBhKw9eikpY0LyqObVWciwF8NPi_cH3dlhv0Tvs-nFMc5vC1qadiTaYfztdaMwm3hkKqlRS6NHh7cGheaS7mC3N_g04LcsK5B0d2TcPv6X4Y8Dcm23IblyA7TAO2bCykppSruWIvn6E3sQhdeMuDJNCiFJrtqemB8qlmHPC-jgBBbOP1uyjNcdoR0F1ENyHFnf_oc3sfPHlr_YPHZyoAQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>De Marco, Maria Letizia</creator><creator>Jiang, Taizhi</creator><creator>Fang, Jie</creator><creator>Lacomme, Sabrina</creator><creator>Zheng, Yuebing</creator><creator>Baron, Alexandre</creator><creator>Korgel, Brian A.</creator><creator>Barois, Philippe</creator><creator>Drisko, Glenna L.</creator><creator>Aymonier, Cyril</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1995-6187</orcidid><orcidid>https://orcid.org/0000-0003-1775-0716</orcidid><orcidid>https://orcid.org/0000-0002-0793-9323</orcidid><orcidid>https://orcid.org/0000-0001-6469-9736</orcidid><orcidid>https://orcid.org/0000-0002-0332-9579</orcidid></search><sort><creationdate>20210601</creationdate><title>Broadband Forward Light Scattering by Architectural Design of Core–Shell Silicon Particles</title><author>De Marco, Maria Letizia ; Jiang, Taizhi ; Fang, Jie ; Lacomme, Sabrina ; Zheng, Yuebing ; Baron, Alexandre ; Korgel, Brian A. ; Barois, Philippe ; Drisko, Glenna L. ; Aymonier, Cyril</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4805-f6204f36058a062e5dfe57d24edde62114c6014a9d0d5494a0739f31aa53e8403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Broadband</topic><topic>Chemical Sciences</topic><topic>Core-shell particles</topic><topic>directional light scattering</topic><topic>Electric dipoles</topic><topic>Forward scattering</topic><topic>Huygens sources</topic><topic>Light scattering</topic><topic>Magnetic dipoles</topic><topic>Magnetic resonance</topic><topic>Material chemistry</topic><topic>Materials science</topic><topic>Metamaterials</topic><topic>Mie scattering</topic><topic>Silicon oxynitride</topic><topic>visible light silicon resonators</topic><topic>Visible spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Marco, Maria Letizia</creatorcontrib><creatorcontrib>Jiang, Taizhi</creatorcontrib><creatorcontrib>Fang, Jie</creatorcontrib><creatorcontrib>Lacomme, Sabrina</creatorcontrib><creatorcontrib>Zheng, Yuebing</creatorcontrib><creatorcontrib>Baron, Alexandre</creatorcontrib><creatorcontrib>Korgel, Brian A.</creatorcontrib><creatorcontrib>Barois, Philippe</creatorcontrib><creatorcontrib>Drisko, Glenna L.</creatorcontrib><creatorcontrib>Aymonier, Cyril</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Marco, Maria Letizia</au><au>Jiang, Taizhi</au><au>Fang, Jie</au><au>Lacomme, Sabrina</au><au>Zheng, Yuebing</au><au>Baron, Alexandre</au><au>Korgel, Brian A.</au><au>Barois, Philippe</au><au>Drisko, Glenna L.</au><au>Aymonier, Cyril</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Forward Light Scattering by Architectural Design of Core–Shell Silicon Particles</atitle><jtitle>Advanced functional materials</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>31</volume><issue>26</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A goal in the field of nanoscale optics is the fabrication of nanostructures with strong directional light scattering at visible frequencies. Here, the synthesis of Mie‐resonant core–shell particles with overlapping electric and magnetic dipole resonances in the visible spectrum is demonstrated. The core consists of silicon surrounded by a lower index silicon oxynitride (SiOxNy) shell of an adjustable thickness. Optical spectroscopies coupled to Mie theory calculations give the first experimental evidence that the relative position and intensity of the magnetic and electric dipole resonances are tuned by changing the core–shell architecture. Specifically, coating a high‐index particle with a low‐index shell coalesces the dipoles, while maintaining a high scattering efficiency, thus generating broadband forward scattering. This synthetic strategy opens a route toward metamaterial fabrication with unprecedented control over visible light manipulation. Core–shell particles composed of Si@SiOxNy are produced in a supercritical reactor. These particles demonstrate broadband, intense forward light scattering superior to that of a simple silicon particle. Experiment and simulation show that the core–shell design is an excellent way to fine tune the resonant properties of the particle, giving access to efficient Huygens sources.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202100915</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1995-6187</orcidid><orcidid>https://orcid.org/0000-0003-1775-0716</orcidid><orcidid>https://orcid.org/0000-0002-0793-9323</orcidid><orcidid>https://orcid.org/0000-0001-6469-9736</orcidid><orcidid>https://orcid.org/0000-0002-0332-9579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-06, Vol.31 (26), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10686547
source Wiley Online Library Journals Frontfile Complete
subjects Broadband
Chemical Sciences
Core-shell particles
directional light scattering
Electric dipoles
Forward scattering
Huygens sources
Light scattering
Magnetic dipoles
Magnetic resonance
Material chemistry
Materials science
Metamaterials
Mie scattering
Silicon oxynitride
visible light silicon resonators
Visible spectrum
title Broadband Forward Light Scattering by Architectural Design of Core–Shell Silicon Particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Forward%20Light%20Scattering%20by%20Architectural%20Design%20of%20Core%E2%80%93Shell%20Silicon%20Particles&rft.jtitle=Advanced%20functional%20materials&rft.au=De%20Marco,%20Maria%20Letizia&rft.date=2021-06-01&rft.volume=31&rft.issue=26&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202100915&rft_dat=%3Cproquest_pubme%3E2895711375%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544487725&rft_id=info:pmid/&rfr_iscdi=true