H-Packer: Holographic Rotationally Equivariant Convolutional Neural Network for Protein Side-Chain Packing
Accurately modeling protein 3D structure is essential for the design of functional proteins. An important sub-task of structure modeling is protein side-chain packing: predicting the conformation of side-chains (rotamers) given the protein's backbone structure and amino-acid sequence. Conventio...
Gespeichert in:
Veröffentlicht in: | ArXiv.org 2023-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | ArXiv.org |
container_volume | |
creator | Visani, Gian Marco Galvin, William Pun, Michael N Nourmohammad, Armita |
description | Accurately modeling protein 3D structure is essential for the design of functional proteins. An important sub-task of structure modeling is protein side-chain packing: predicting the conformation of side-chains (rotamers) given the protein's backbone structure and amino-acid sequence. Conventional approaches for this task rely on expensive sampling procedures over hand-crafted energy functions and rotamer libraries. Recently, several deep learning methods have been developed to tackle the problem in a data-driven way, albeit with vastly different formulations (from image-to-image translation to directly predicting atomic coordinates). Here, we frame the problem as a joint regression over the side-chains' true degrees of freedom: the dihedral
angles. We carefully study possible objective functions for this task, while accounting for the underlying symmetries of the task. We propose
(H-Packer), a novel two-stage algorithm for side-chain packing built on top of two light-weight rotationally equivariant neural networks. We evaluate our method on CASP13 and CASP14 targets. H-Packer is computationally efficient and shows favorable performance against conventional physics-based algorithms and is competitive against alternative deep learning solutions. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10680869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894723810</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1129-af6ec8fdfe0dec77d98287f18bd851bba2088756f5e279969c58f117356fa1c53</originalsourceid><addsrcrecordid>eNpVkN1PwjAUxRejEYL8C6aPvizpB1tvfTFmQTEhSvx4XrquhcJoodsw_PdOQYNP5-Sem_O7uWdRnzJGYhhRen7ie9GwrpcYY5pymiTsMuoxwISBIP1oOYlnUq10uEUTX_l5kJuFVejVN7Kx3smq2qPxtrU7Gax0Dcq82_mqPWToWbfhR5pPH1bI-IBmwTfaOvRmSx1nC9nZb4B186vowsiq1sOjDqKPh_F7NomnL49P2f003hBCRSxNqhWY0mhcasV5KYACNwSKEhJSFJJiAJ6kJtGUC5EKlYAhhLNuJIlK2CC6O_Ru2mKtS6Vd0x2Zb4Jdy7DPvbT5_8TZRT73u5zgFDCkomu4OTYEv2113eRrWytdVdJp39Y5BTHilAHB3er1KeyP8vth9gWQ9HuW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894723810</pqid></control><display><type>article</type><title>H-Packer: Holographic Rotationally Equivariant Convolutional Neural Network for Protein Side-Chain Packing</title><source>Free E- Journals</source><creator>Visani, Gian Marco ; Galvin, William ; Pun, Michael N ; Nourmohammad, Armita</creator><creatorcontrib>Visani, Gian Marco ; Galvin, William ; Pun, Michael N ; Nourmohammad, Armita</creatorcontrib><description>Accurately modeling protein 3D structure is essential for the design of functional proteins. An important sub-task of structure modeling is protein side-chain packing: predicting the conformation of side-chains (rotamers) given the protein's backbone structure and amino-acid sequence. Conventional approaches for this task rely on expensive sampling procedures over hand-crafted energy functions and rotamer libraries. Recently, several deep learning methods have been developed to tackle the problem in a data-driven way, albeit with vastly different formulations (from image-to-image translation to directly predicting atomic coordinates). Here, we frame the problem as a joint regression over the side-chains' true degrees of freedom: the dihedral
angles. We carefully study possible objective functions for this task, while accounting for the underlying symmetries of the task. We propose
(H-Packer), a novel two-stage algorithm for side-chain packing built on top of two light-weight rotationally equivariant neural networks. We evaluate our method on CASP13 and CASP14 targets. H-Packer is computationally efficient and shows favorable performance against conventional physics-based algorithms and is competitive against alternative deep learning solutions.</description><identifier>ISSN: 2331-8422</identifier><identifier>EISSN: 2331-8422</identifier><identifier>PMID: 38013891</identifier><language>eng</language><publisher>United States: Cornell University</publisher><ispartof>ArXiv.org, 2023-11</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38013891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Visani, Gian Marco</creatorcontrib><creatorcontrib>Galvin, William</creatorcontrib><creatorcontrib>Pun, Michael N</creatorcontrib><creatorcontrib>Nourmohammad, Armita</creatorcontrib><title>H-Packer: Holographic Rotationally Equivariant Convolutional Neural Network for Protein Side-Chain Packing</title><title>ArXiv.org</title><addtitle>ArXiv</addtitle><description>Accurately modeling protein 3D structure is essential for the design of functional proteins. An important sub-task of structure modeling is protein side-chain packing: predicting the conformation of side-chains (rotamers) given the protein's backbone structure and amino-acid sequence. Conventional approaches for this task rely on expensive sampling procedures over hand-crafted energy functions and rotamer libraries. Recently, several deep learning methods have been developed to tackle the problem in a data-driven way, albeit with vastly different formulations (from image-to-image translation to directly predicting atomic coordinates). Here, we frame the problem as a joint regression over the side-chains' true degrees of freedom: the dihedral
angles. We carefully study possible objective functions for this task, while accounting for the underlying symmetries of the task. We propose
(H-Packer), a novel two-stage algorithm for side-chain packing built on top of two light-weight rotationally equivariant neural networks. We evaluate our method on CASP13 and CASP14 targets. H-Packer is computationally efficient and shows favorable performance against conventional physics-based algorithms and is competitive against alternative deep learning solutions.</description><issn>2331-8422</issn><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkN1PwjAUxRejEYL8C6aPvizpB1tvfTFmQTEhSvx4XrquhcJoodsw_PdOQYNP5-Sem_O7uWdRnzJGYhhRen7ie9GwrpcYY5pymiTsMuoxwISBIP1oOYlnUq10uEUTX_l5kJuFVejVN7Kx3smq2qPxtrU7Gax0Dcq82_mqPWToWbfhR5pPH1bI-IBmwTfaOvRmSx1nC9nZb4B186vowsiq1sOjDqKPh_F7NomnL49P2f003hBCRSxNqhWY0mhcasV5KYACNwSKEhJSFJJiAJ6kJtGUC5EKlYAhhLNuJIlK2CC6O_Ru2mKtS6Vd0x2Zb4Jdy7DPvbT5_8TZRT73u5zgFDCkomu4OTYEv2113eRrWytdVdJp39Y5BTHilAHB3er1KeyP8vth9gWQ9HuW</recordid><startdate>20231128</startdate><enddate>20231128</enddate><creator>Visani, Gian Marco</creator><creator>Galvin, William</creator><creator>Pun, Michael N</creator><creator>Nourmohammad, Armita</creator><general>Cornell University</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231128</creationdate><title>H-Packer: Holographic Rotationally Equivariant Convolutional Neural Network for Protein Side-Chain Packing</title><author>Visani, Gian Marco ; Galvin, William ; Pun, Michael N ; Nourmohammad, Armita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1129-af6ec8fdfe0dec77d98287f18bd851bba2088756f5e279969c58f117356fa1c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Visani, Gian Marco</creatorcontrib><creatorcontrib>Galvin, William</creatorcontrib><creatorcontrib>Pun, Michael N</creatorcontrib><creatorcontrib>Nourmohammad, Armita</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ArXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Visani, Gian Marco</au><au>Galvin, William</au><au>Pun, Michael N</au><au>Nourmohammad, Armita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H-Packer: Holographic Rotationally Equivariant Convolutional Neural Network for Protein Side-Chain Packing</atitle><jtitle>ArXiv.org</jtitle><addtitle>ArXiv</addtitle><date>2023-11-28</date><risdate>2023</risdate><issn>2331-8422</issn><eissn>2331-8422</eissn><abstract>Accurately modeling protein 3D structure is essential for the design of functional proteins. An important sub-task of structure modeling is protein side-chain packing: predicting the conformation of side-chains (rotamers) given the protein's backbone structure and amino-acid sequence. Conventional approaches for this task rely on expensive sampling procedures over hand-crafted energy functions and rotamer libraries. Recently, several deep learning methods have been developed to tackle the problem in a data-driven way, albeit with vastly different formulations (from image-to-image translation to directly predicting atomic coordinates). Here, we frame the problem as a joint regression over the side-chains' true degrees of freedom: the dihedral
angles. We carefully study possible objective functions for this task, while accounting for the underlying symmetries of the task. We propose
(H-Packer), a novel two-stage algorithm for side-chain packing built on top of two light-weight rotationally equivariant neural networks. We evaluate our method on CASP13 and CASP14 targets. H-Packer is computationally efficient and shows favorable performance against conventional physics-based algorithms and is competitive against alternative deep learning solutions.</abstract><cop>United States</cop><pub>Cornell University</pub><pmid>38013891</pmid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-8422 |
ispartof | ArXiv.org, 2023-11 |
issn | 2331-8422 2331-8422 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10680869 |
source | Free E- Journals |
title | H-Packer: Holographic Rotationally Equivariant Convolutional Neural Network for Protein Side-Chain Packing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H-Packer:%20Holographic%20Rotationally%20Equivariant%20Convolutional%20Neural%20Network%20for%20Protein%20Side-Chain%20Packing&rft.jtitle=ArXiv.org&rft.au=Visani,%20Gian%20Marco&rft.date=2023-11-28&rft.issn=2331-8422&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2894723810%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894723810&rft_id=info:pmid/38013891&rfr_iscdi=true |