Adherens junctions organize size-selective proteolytic hotspots critical for Notch signalling
Adherens junctions (AJs) create spatially, chemically and mechanically discrete microdomains at cellular interfaces. Here, using a mechanogenetic platform that generates artificial AJs with controlled protein localization, clustering and mechanical loading, we find that AJs also organize proteolytic...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2022-12, Vol.24 (12), p.1739-1753 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1753 |
---|---|
container_issue | 12 |
container_start_page | 1739 |
container_title | Nature cell biology |
container_volume | 24 |
creator | Kwak, Minsuk Southard, Kaden M. Kim, Woon Ryoung Lin, Annie Kim, Nam Hyeong Gopalappa, Ramu Lee, Hyun Jung An, Minji Choi, Seo Hyun Jung, Yunmin Noh, Kunwoo Farlow, Justin Georgakopoulos, Anastasios Robakis, Nikolaos K. Kang, Min K. Kutys, Matthew L. Seo, Daeha Kim, Hyongbum Henry Kim, Yong Ho Cheon, Jinwoo Gartner, Zev J. Jun, Young-wook |
description | Adherens junctions (AJs) create spatially, chemically and mechanically discrete microdomains at cellular interfaces. Here, using a mechanogenetic platform that generates artificial AJs with controlled protein localization, clustering and mechanical loading, we find that AJs also organize proteolytic hotspots for γ-secretase with a spatially regulated substrate selectivity that is critical in the processing of Notch and other transmembrane proteins. Membrane microdomains outside of AJs exclusively organize Notch ligand–receptor engagement (LRE microdomains) to initiate receptor activation. Conversely, membrane microdomains within AJs exclusively serve to coordinate regulated intramembrane proteolysis (RIP microdomains). They do so by concentrating γ-secretase and primed receptors while excluding full-length Notch. AJs induce these functionally distinct microdomains by means of lipid-dependent γ-secretase recruitment and size-dependent protein segregation. By excluding full-length Notch from RIP microdomains, AJs prevent inappropriate enzyme–substrate interactions and suppress spurious Notch activation. Ligand-induced ectodomain shedding eliminates size-dependent segregation, releasing Notch to translocate into AJs for processing by γ-secretase. This mechanism directs radial differentiation of ventricular zone-neural progenitor cells in vivo and more broadly regulates the proteolysis of other large cell-surface receptors such as amyloid precursor protein. These findings suggest an unprecedented role of AJs in creating size-selective spatial switches that choreograph γ-secretase processing of multiple transmembrane proteins regulating development, homeostasis and disease.
Kwak et al. report that adherens junctions organize membrane microdomains, leading to lipid-dependent γ-secretase recruitment and size-dependent protein segregation, excluding full-length Notch receptor. |
doi_str_mv | 10.1038/s41556-022-01031-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10665132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747838089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-2adc042e49aeb9c4965ee9c47d29f2afebe643a016610678e9297f91f67c2a043</originalsourceid><addsrcrecordid>eNp9kUuPFCEQx4nRuA_9Ah5MJ168oLwampPZbNZHstGLHg1hmOoeJgyM0L3J7qe3dmddHwcPQEH96g_Fn5AXnL3hTA5vm-J9rykTgjI84FQ_IsdcGU2VNvbxbax7aqQVR-SktS1jXClmnpIjqVWvBzEck-9n6w1UyK3bLjnMsWBU6uRzvIGu4UQbJMDEFXT7WmYo6XqOoduUue1xdKFG3PvUjaV2n8scNlg2ZZ9SzNMz8mT0qcHz-_WUfHt_8fX8I7388uHT-dklDcr0MxV-HZgSoKyHlQ3K6h4AV7MWdhR-hBVoJT3jWnOmzQBWWDNaPmoThGdKnpJ3B939strBOkCeq09uX-PO12tXfHR_Z3LcuKlcOZTTPZcCFV7fK9TyY4E2u11sAVLyGcrSnDBKS4s_2CP66h90W5aKHd9RZpADGyxS4kCFWlqrMD68hjN3a5872OfQPndnn9NY9PLPPh5KfvmFgDwADVN5gvr77v_I_gRUK6gP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747838089</pqid></control><display><type>article</type><title>Adherens junctions organize size-selective proteolytic hotspots critical for Notch signalling</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Kwak, Minsuk ; Southard, Kaden M. ; Kim, Woon Ryoung ; Lin, Annie ; Kim, Nam Hyeong ; Gopalappa, Ramu ; Lee, Hyun Jung ; An, Minji ; Choi, Seo Hyun ; Jung, Yunmin ; Noh, Kunwoo ; Farlow, Justin ; Georgakopoulos, Anastasios ; Robakis, Nikolaos K. ; Kang, Min K. ; Kutys, Matthew L. ; Seo, Daeha ; Kim, Hyongbum Henry ; Kim, Yong Ho ; Cheon, Jinwoo ; Gartner, Zev J. ; Jun, Young-wook</creator><creatorcontrib>Kwak, Minsuk ; Southard, Kaden M. ; Kim, Woon Ryoung ; Lin, Annie ; Kim, Nam Hyeong ; Gopalappa, Ramu ; Lee, Hyun Jung ; An, Minji ; Choi, Seo Hyun ; Jung, Yunmin ; Noh, Kunwoo ; Farlow, Justin ; Georgakopoulos, Anastasios ; Robakis, Nikolaos K. ; Kang, Min K. ; Kutys, Matthew L. ; Seo, Daeha ; Kim, Hyongbum Henry ; Kim, Yong Ho ; Cheon, Jinwoo ; Gartner, Zev J. ; Jun, Young-wook</creatorcontrib><description>Adherens junctions (AJs) create spatially, chemically and mechanically discrete microdomains at cellular interfaces. Here, using a mechanogenetic platform that generates artificial AJs with controlled protein localization, clustering and mechanical loading, we find that AJs also organize proteolytic hotspots for γ-secretase with a spatially regulated substrate selectivity that is critical in the processing of Notch and other transmembrane proteins. Membrane microdomains outside of AJs exclusively organize Notch ligand–receptor engagement (LRE microdomains) to initiate receptor activation. Conversely, membrane microdomains within AJs exclusively serve to coordinate regulated intramembrane proteolysis (RIP microdomains). They do so by concentrating γ-secretase and primed receptors while excluding full-length Notch. AJs induce these functionally distinct microdomains by means of lipid-dependent γ-secretase recruitment and size-dependent protein segregation. By excluding full-length Notch from RIP microdomains, AJs prevent inappropriate enzyme–substrate interactions and suppress spurious Notch activation. Ligand-induced ectodomain shedding eliminates size-dependent segregation, releasing Notch to translocate into AJs for processing by γ-secretase. This mechanism directs radial differentiation of ventricular zone-neural progenitor cells in vivo and more broadly regulates the proteolysis of other large cell-surface receptors such as amyloid precursor protein. These findings suggest an unprecedented role of AJs in creating size-selective spatial switches that choreograph γ-secretase processing of multiple transmembrane proteins regulating development, homeostasis and disease.
Kwak et al. report that adherens junctions organize membrane microdomains, leading to lipid-dependent γ-secretase recruitment and size-dependent protein segregation, excluding full-length Notch receptor.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-022-01031-6</identifier><identifier>PMID: 36456828</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/2204/2209 ; 631/57/2272 ; 631/80/79/2028 ; 631/80/86/820 ; Adherens junctions ; Alzheimer's disease ; Amyloid precursor protein ; Amyloid Precursor Protein Secretases - genetics ; Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; Cell differentiation ; Cell surface ; Cells (biology) ; Clustering ; Developmental Biology ; Homeostasis ; Interfaces ; Life Sciences ; Ligands ; Lipids ; Localization ; Mechanical loading ; Membrane proteins ; Membranes ; Neural stem cells ; Notch protein ; Progenitor cells ; Proteins ; Proteolysis ; Receptor mechanisms ; Receptors ; Recruitment ; Secretase ; Selectivity ; Stem Cells ; Substrates ; Switches ; Ventricle ; Ventricular zone</subject><ispartof>Nature cell biology, 2022-12, Vol.24 (12), p.1739-1753</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-2adc042e49aeb9c4965ee9c47d29f2afebe643a016610678e9297f91f67c2a043</citedby><cites>FETCH-LOGICAL-c475t-2adc042e49aeb9c4965ee9c47d29f2afebe643a016610678e9297f91f67c2a043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-022-01031-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-022-01031-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36456828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwak, Minsuk</creatorcontrib><creatorcontrib>Southard, Kaden M.</creatorcontrib><creatorcontrib>Kim, Woon Ryoung</creatorcontrib><creatorcontrib>Lin, Annie</creatorcontrib><creatorcontrib>Kim, Nam Hyeong</creatorcontrib><creatorcontrib>Gopalappa, Ramu</creatorcontrib><creatorcontrib>Lee, Hyun Jung</creatorcontrib><creatorcontrib>An, Minji</creatorcontrib><creatorcontrib>Choi, Seo Hyun</creatorcontrib><creatorcontrib>Jung, Yunmin</creatorcontrib><creatorcontrib>Noh, Kunwoo</creatorcontrib><creatorcontrib>Farlow, Justin</creatorcontrib><creatorcontrib>Georgakopoulos, Anastasios</creatorcontrib><creatorcontrib>Robakis, Nikolaos K.</creatorcontrib><creatorcontrib>Kang, Min K.</creatorcontrib><creatorcontrib>Kutys, Matthew L.</creatorcontrib><creatorcontrib>Seo, Daeha</creatorcontrib><creatorcontrib>Kim, Hyongbum Henry</creatorcontrib><creatorcontrib>Kim, Yong Ho</creatorcontrib><creatorcontrib>Cheon, Jinwoo</creatorcontrib><creatorcontrib>Gartner, Zev J.</creatorcontrib><creatorcontrib>Jun, Young-wook</creatorcontrib><title>Adherens junctions organize size-selective proteolytic hotspots critical for Notch signalling</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Adherens junctions (AJs) create spatially, chemically and mechanically discrete microdomains at cellular interfaces. Here, using a mechanogenetic platform that generates artificial AJs with controlled protein localization, clustering and mechanical loading, we find that AJs also organize proteolytic hotspots for γ-secretase with a spatially regulated substrate selectivity that is critical in the processing of Notch and other transmembrane proteins. Membrane microdomains outside of AJs exclusively organize Notch ligand–receptor engagement (LRE microdomains) to initiate receptor activation. Conversely, membrane microdomains within AJs exclusively serve to coordinate regulated intramembrane proteolysis (RIP microdomains). They do so by concentrating γ-secretase and primed receptors while excluding full-length Notch. AJs induce these functionally distinct microdomains by means of lipid-dependent γ-secretase recruitment and size-dependent protein segregation. By excluding full-length Notch from RIP microdomains, AJs prevent inappropriate enzyme–substrate interactions and suppress spurious Notch activation. Ligand-induced ectodomain shedding eliminates size-dependent segregation, releasing Notch to translocate into AJs for processing by γ-secretase. This mechanism directs radial differentiation of ventricular zone-neural progenitor cells in vivo and more broadly regulates the proteolysis of other large cell-surface receptors such as amyloid precursor protein. These findings suggest an unprecedented role of AJs in creating size-selective spatial switches that choreograph γ-secretase processing of multiple transmembrane proteins regulating development, homeostasis and disease.
Kwak et al. report that adherens junctions organize membrane microdomains, leading to lipid-dependent γ-secretase recruitment and size-dependent protein segregation, excluding full-length Notch receptor.</description><subject>631/1647/2204/2209</subject><subject>631/57/2272</subject><subject>631/80/79/2028</subject><subject>631/80/86/820</subject><subject>Adherens junctions</subject><subject>Alzheimer's disease</subject><subject>Amyloid precursor protein</subject><subject>Amyloid Precursor Protein Secretases - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell differentiation</subject><subject>Cell surface</subject><subject>Cells (biology)</subject><subject>Clustering</subject><subject>Developmental Biology</subject><subject>Homeostasis</subject><subject>Interfaces</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Lipids</subject><subject>Localization</subject><subject>Mechanical loading</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Neural stem cells</subject><subject>Notch protein</subject><subject>Progenitor cells</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Recruitment</subject><subject>Secretase</subject><subject>Selectivity</subject><subject>Stem Cells</subject><subject>Substrates</subject><subject>Switches</subject><subject>Ventricle</subject><subject>Ventricular zone</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUuPFCEQx4nRuA_9Ah5MJ168oLwampPZbNZHstGLHg1hmOoeJgyM0L3J7qe3dmddHwcPQEH96g_Fn5AXnL3hTA5vm-J9rykTgjI84FQ_IsdcGU2VNvbxbax7aqQVR-SktS1jXClmnpIjqVWvBzEck-9n6w1UyK3bLjnMsWBU6uRzvIGu4UQbJMDEFXT7WmYo6XqOoduUue1xdKFG3PvUjaV2n8scNlg2ZZ9SzNMz8mT0qcHz-_WUfHt_8fX8I7388uHT-dklDcr0MxV-HZgSoKyHlQ3K6h4AV7MWdhR-hBVoJT3jWnOmzQBWWDNaPmoThGdKnpJ3B939strBOkCeq09uX-PO12tXfHR_Z3LcuKlcOZTTPZcCFV7fK9TyY4E2u11sAVLyGcrSnDBKS4s_2CP66h90W5aKHd9RZpADGyxS4kCFWlqrMD68hjN3a5872OfQPndnn9NY9PLPPh5KfvmFgDwADVN5gvr77v_I_gRUK6gP</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Kwak, Minsuk</creator><creator>Southard, Kaden M.</creator><creator>Kim, Woon Ryoung</creator><creator>Lin, Annie</creator><creator>Kim, Nam Hyeong</creator><creator>Gopalappa, Ramu</creator><creator>Lee, Hyun Jung</creator><creator>An, Minji</creator><creator>Choi, Seo Hyun</creator><creator>Jung, Yunmin</creator><creator>Noh, Kunwoo</creator><creator>Farlow, Justin</creator><creator>Georgakopoulos, Anastasios</creator><creator>Robakis, Nikolaos K.</creator><creator>Kang, Min K.</creator><creator>Kutys, Matthew L.</creator><creator>Seo, Daeha</creator><creator>Kim, Hyongbum Henry</creator><creator>Kim, Yong Ho</creator><creator>Cheon, Jinwoo</creator><creator>Gartner, Zev J.</creator><creator>Jun, Young-wook</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20221201</creationdate><title>Adherens junctions organize size-selective proteolytic hotspots critical for Notch signalling</title><author>Kwak, Minsuk ; Southard, Kaden M. ; Kim, Woon Ryoung ; Lin, Annie ; Kim, Nam Hyeong ; Gopalappa, Ramu ; Lee, Hyun Jung ; An, Minji ; Choi, Seo Hyun ; Jung, Yunmin ; Noh, Kunwoo ; Farlow, Justin ; Georgakopoulos, Anastasios ; Robakis, Nikolaos K. ; Kang, Min K. ; Kutys, Matthew L. ; Seo, Daeha ; Kim, Hyongbum Henry ; Kim, Yong Ho ; Cheon, Jinwoo ; Gartner, Zev J. ; Jun, Young-wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-2adc042e49aeb9c4965ee9c47d29f2afebe643a016610678e9297f91f67c2a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/1647/2204/2209</topic><topic>631/57/2272</topic><topic>631/80/79/2028</topic><topic>631/80/86/820</topic><topic>Adherens junctions</topic><topic>Alzheimer's disease</topic><topic>Amyloid precursor protein</topic><topic>Amyloid Precursor Protein Secretases - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell differentiation</topic><topic>Cell surface</topic><topic>Cells (biology)</topic><topic>Clustering</topic><topic>Developmental Biology</topic><topic>Homeostasis</topic><topic>Interfaces</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Lipids</topic><topic>Localization</topic><topic>Mechanical loading</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Neural stem cells</topic><topic>Notch protein</topic><topic>Progenitor cells</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Recruitment</topic><topic>Secretase</topic><topic>Selectivity</topic><topic>Stem Cells</topic><topic>Substrates</topic><topic>Switches</topic><topic>Ventricle</topic><topic>Ventricular zone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwak, Minsuk</creatorcontrib><creatorcontrib>Southard, Kaden M.</creatorcontrib><creatorcontrib>Kim, Woon Ryoung</creatorcontrib><creatorcontrib>Lin, Annie</creatorcontrib><creatorcontrib>Kim, Nam Hyeong</creatorcontrib><creatorcontrib>Gopalappa, Ramu</creatorcontrib><creatorcontrib>Lee, Hyun Jung</creatorcontrib><creatorcontrib>An, Minji</creatorcontrib><creatorcontrib>Choi, Seo Hyun</creatorcontrib><creatorcontrib>Jung, Yunmin</creatorcontrib><creatorcontrib>Noh, Kunwoo</creatorcontrib><creatorcontrib>Farlow, Justin</creatorcontrib><creatorcontrib>Georgakopoulos, Anastasios</creatorcontrib><creatorcontrib>Robakis, Nikolaos K.</creatorcontrib><creatorcontrib>Kang, Min K.</creatorcontrib><creatorcontrib>Kutys, Matthew L.</creatorcontrib><creatorcontrib>Seo, Daeha</creatorcontrib><creatorcontrib>Kim, Hyongbum Henry</creatorcontrib><creatorcontrib>Kim, Yong Ho</creatorcontrib><creatorcontrib>Cheon, Jinwoo</creatorcontrib><creatorcontrib>Gartner, Zev J.</creatorcontrib><creatorcontrib>Jun, Young-wook</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwak, Minsuk</au><au>Southard, Kaden M.</au><au>Kim, Woon Ryoung</au><au>Lin, Annie</au><au>Kim, Nam Hyeong</au><au>Gopalappa, Ramu</au><au>Lee, Hyun Jung</au><au>An, Minji</au><au>Choi, Seo Hyun</au><au>Jung, Yunmin</au><au>Noh, Kunwoo</au><au>Farlow, Justin</au><au>Georgakopoulos, Anastasios</au><au>Robakis, Nikolaos K.</au><au>Kang, Min K.</au><au>Kutys, Matthew L.</au><au>Seo, Daeha</au><au>Kim, Hyongbum Henry</au><au>Kim, Yong Ho</au><au>Cheon, Jinwoo</au><au>Gartner, Zev J.</au><au>Jun, Young-wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adherens junctions organize size-selective proteolytic hotspots critical for Notch signalling</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>24</volume><issue>12</issue><spage>1739</spage><epage>1753</epage><pages>1739-1753</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Adherens junctions (AJs) create spatially, chemically and mechanically discrete microdomains at cellular interfaces. Here, using a mechanogenetic platform that generates artificial AJs with controlled protein localization, clustering and mechanical loading, we find that AJs also organize proteolytic hotspots for γ-secretase with a spatially regulated substrate selectivity that is critical in the processing of Notch and other transmembrane proteins. Membrane microdomains outside of AJs exclusively organize Notch ligand–receptor engagement (LRE microdomains) to initiate receptor activation. Conversely, membrane microdomains within AJs exclusively serve to coordinate regulated intramembrane proteolysis (RIP microdomains). They do so by concentrating γ-secretase and primed receptors while excluding full-length Notch. AJs induce these functionally distinct microdomains by means of lipid-dependent γ-secretase recruitment and size-dependent protein segregation. By excluding full-length Notch from RIP microdomains, AJs prevent inappropriate enzyme–substrate interactions and suppress spurious Notch activation. Ligand-induced ectodomain shedding eliminates size-dependent segregation, releasing Notch to translocate into AJs for processing by γ-secretase. This mechanism directs radial differentiation of ventricular zone-neural progenitor cells in vivo and more broadly regulates the proteolysis of other large cell-surface receptors such as amyloid precursor protein. These findings suggest an unprecedented role of AJs in creating size-selective spatial switches that choreograph γ-secretase processing of multiple transmembrane proteins regulating development, homeostasis and disease.
Kwak et al. report that adherens junctions organize membrane microdomains, leading to lipid-dependent γ-secretase recruitment and size-dependent protein segregation, excluding full-length Notch receptor.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36456828</pmid><doi>10.1038/s41556-022-01031-6</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2022-12, Vol.24 (12), p.1739-1753 |
issn | 1465-7392 1476-4679 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10665132 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/1647/2204/2209 631/57/2272 631/80/79/2028 631/80/86/820 Adherens junctions Alzheimer's disease Amyloid precursor protein Amyloid Precursor Protein Secretases - genetics Biomedical and Life Sciences Cancer Research Cell Biology Cell differentiation Cell surface Cells (biology) Clustering Developmental Biology Homeostasis Interfaces Life Sciences Ligands Lipids Localization Mechanical loading Membrane proteins Membranes Neural stem cells Notch protein Progenitor cells Proteins Proteolysis Receptor mechanisms Receptors Recruitment Secretase Selectivity Stem Cells Substrates Switches Ventricle Ventricular zone |
title | Adherens junctions organize size-selective proteolytic hotspots critical for Notch signalling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adherens%20junctions%20organize%20size-selective%20proteolytic%20hotspots%20critical%20for%20Notch%20signalling&rft.jtitle=Nature%20cell%20biology&rft.au=Kwak,%20Minsuk&rft.date=2022-12-01&rft.volume=24&rft.issue=12&rft.spage=1739&rft.epage=1753&rft.pages=1739-1753&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-022-01031-6&rft_dat=%3Cproquest_pubme%3E2747838089%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747838089&rft_id=info:pmid/36456828&rfr_iscdi=true |