Epigenetic and epitranscriptomic regulation of axon regeneration
Effective axonal regeneration in the adult mammalian nervous system requires coordination of elevated intrinsic growth capacity and decreased responses to the inhibitory environment. Intrinsic regenerative capacity largely depends on the gene regulatory network and protein translation machinery. A f...
Gespeichert in:
Veröffentlicht in: | Molecular psychiatry 2023-04, Vol.28 (4), p.1440-1450 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1450 |
---|---|
container_issue | 4 |
container_start_page | 1440 |
container_title | Molecular psychiatry |
container_volume | 28 |
creator | Cheng, Yating Song, Hongjun Ming, Guo-li Weng, Yi-Lan |
description | Effective axonal regeneration in the adult mammalian nervous system requires coordination of elevated intrinsic growth capacity and decreased responses to the inhibitory environment. Intrinsic regenerative capacity largely depends on the gene regulatory network and protein translation machinery. A failure to activate these pathways upon injury is underlying a lack of robust axon regeneration in the mature mammalian central nervous system. Epigenetics and epitranscriptomics are key regulatory mechanisms that shape gene expression and protein translation. Here, we provide an overview of different types of modifications on DNA, histones, and RNA, underpinning the regenerative competence of axons in the mature mammalian peripheral and central nervous systems. We highlight other non-neuronal cells and their epigenetic changes in determining the microenvironment for tissue repair and axon regeneration. We also address advancements of single-cell technology in charting transcriptomic and epigenetic landscapes that may further facilitate the mechanistic understanding of differential regenerative capacity in neuronal subtypes. Finally, as epigenetic and epitranscriptomic processes are commonly affected by brain injuries and psychiatric disorders, understanding their alterations upon brain injury would provide unprecedented mechanistic insights into etiology of injury-associated-psychiatric disorders and facilitate the development of therapeutic interventions to restore brain function. |
doi_str_mv | 10.1038/s41380-023-02028-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10650481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818580408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-4883637c7bc4bb2f2a7d8f460a553759108e5dbc069b1b0dc117e35c3a836cb33</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0EomX5AxxQJS5cAl5j5wSoKotUiQucLcdxiqvUDnaC4N_jLpTlwMEaa-Z7z2M9AE4QvECQiMtIEREwg5ikA7HIih0wRJTnGWNc7KY7YUVGkaADcBDjHMLlkO2DAckLjHNOh-B60tqZcaazeqRcNTKt7YJyUQfbdn6RusHM-kZ11ruRr0fqPdXUSpKwah6BvVo10Rxv6iF4vp08je-z6ePdw_hmmmlKUJdRIUhOuOalpmWJa6x4JWqaQ8UY4axAUBhWlRrmRYlKWGmEuCFME5V0uiTkEFytfdu-XJhKG5f2bGQb7EKFD-mVlb8nzr7ImX-TCOYMUoGSw_nGIfjX3sROLmzUpmmUM76PEgtUYJ6Tgib07A86931w6X9LSjABKRSJwmtKBx9jMPV2GwTlMiG5TkimhOQqIVkk0enPf2wlX5EkgKyBmEZuZsL32__YfgJj2Zxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818580408</pqid></control><display><type>article</type><title>Epigenetic and epitranscriptomic regulation of axon regeneration</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cheng, Yating ; Song, Hongjun ; Ming, Guo-li ; Weng, Yi-Lan</creator><creatorcontrib>Cheng, Yating ; Song, Hongjun ; Ming, Guo-li ; Weng, Yi-Lan</creatorcontrib><description>Effective axonal regeneration in the adult mammalian nervous system requires coordination of elevated intrinsic growth capacity and decreased responses to the inhibitory environment. Intrinsic regenerative capacity largely depends on the gene regulatory network and protein translation machinery. A failure to activate these pathways upon injury is underlying a lack of robust axon regeneration in the mature mammalian central nervous system. Epigenetics and epitranscriptomics are key regulatory mechanisms that shape gene expression and protein translation. Here, we provide an overview of different types of modifications on DNA, histones, and RNA, underpinning the regenerative competence of axons in the mature mammalian peripheral and central nervous systems. We highlight other non-neuronal cells and their epigenetic changes in determining the microenvironment for tissue repair and axon regeneration. We also address advancements of single-cell technology in charting transcriptomic and epigenetic landscapes that may further facilitate the mechanistic understanding of differential regenerative capacity in neuronal subtypes. Finally, as epigenetic and epitranscriptomic processes are commonly affected by brain injuries and psychiatric disorders, understanding their alterations upon brain injury would provide unprecedented mechanistic insights into etiology of injury-associated-psychiatric disorders and facilitate the development of therapeutic interventions to restore brain function.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/s41380-023-02028-9</identifier><identifier>PMID: 36922674</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 38/91 ; 45 ; 45/15 ; 631/337 ; 631/378 ; 64/60 ; 82/80 ; Animals ; Axons ; Axons - metabolism ; Behavioral Sciences ; Biological Psychology ; Brain Injuries - metabolism ; Brain injury ; Central Nervous System ; Epigenesis, Genetic - genetics ; Epigenetics ; Expert Review ; Gene expression ; Histones ; Humans ; Mammals ; Medicine ; Medicine & Public Health ; Mental disorders ; Microenvironments ; Nerve Regeneration - genetics ; Nervous system ; Neurons ; Neurosciences ; Pharmacotherapy ; Psychiatry ; Recovery of function ; Regeneration ; Therapeutic applications ; Transcriptomics ; Translation</subject><ispartof>Molecular psychiatry, 2023-04, Vol.28 (4), p.1440-1450</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-4883637c7bc4bb2f2a7d8f460a553759108e5dbc069b1b0dc117e35c3a836cb33</citedby><cites>FETCH-LOGICAL-c431t-4883637c7bc4bb2f2a7d8f460a553759108e5dbc069b1b0dc117e35c3a836cb33</cites><orcidid>0000-0001-6175-0401 ; 0000-0002-8720-5310 ; 0000-0002-2517-6075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41380-023-02028-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41380-023-02028-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36922674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Yating</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Ming, Guo-li</creatorcontrib><creatorcontrib>Weng, Yi-Lan</creatorcontrib><title>Epigenetic and epitranscriptomic regulation of axon regeneration</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Effective axonal regeneration in the adult mammalian nervous system requires coordination of elevated intrinsic growth capacity and decreased responses to the inhibitory environment. Intrinsic regenerative capacity largely depends on the gene regulatory network and protein translation machinery. A failure to activate these pathways upon injury is underlying a lack of robust axon regeneration in the mature mammalian central nervous system. Epigenetics and epitranscriptomics are key regulatory mechanisms that shape gene expression and protein translation. Here, we provide an overview of different types of modifications on DNA, histones, and RNA, underpinning the regenerative competence of axons in the mature mammalian peripheral and central nervous systems. We highlight other non-neuronal cells and their epigenetic changes in determining the microenvironment for tissue repair and axon regeneration. We also address advancements of single-cell technology in charting transcriptomic and epigenetic landscapes that may further facilitate the mechanistic understanding of differential regenerative capacity in neuronal subtypes. Finally, as epigenetic and epitranscriptomic processes are commonly affected by brain injuries and psychiatric disorders, understanding their alterations upon brain injury would provide unprecedented mechanistic insights into etiology of injury-associated-psychiatric disorders and facilitate the development of therapeutic interventions to restore brain function.</description><subject>38/39</subject><subject>38/91</subject><subject>45</subject><subject>45/15</subject><subject>631/337</subject><subject>631/378</subject><subject>64/60</subject><subject>82/80</subject><subject>Animals</subject><subject>Axons</subject><subject>Axons - metabolism</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Brain Injuries - metabolism</subject><subject>Brain injury</subject><subject>Central Nervous System</subject><subject>Epigenesis, Genetic - genetics</subject><subject>Epigenetics</subject><subject>Expert Review</subject><subject>Gene expression</subject><subject>Histones</subject><subject>Humans</subject><subject>Mammals</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mental disorders</subject><subject>Microenvironments</subject><subject>Nerve Regeneration - genetics</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Pharmacotherapy</subject><subject>Psychiatry</subject><subject>Recovery of function</subject><subject>Regeneration</subject><subject>Therapeutic applications</subject><subject>Transcriptomics</subject><subject>Translation</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUlPwzAQhS0EomX5AxxQJS5cAl5j5wSoKotUiQucLcdxiqvUDnaC4N_jLpTlwMEaa-Z7z2M9AE4QvECQiMtIEREwg5ikA7HIih0wRJTnGWNc7KY7YUVGkaADcBDjHMLlkO2DAckLjHNOh-B60tqZcaazeqRcNTKt7YJyUQfbdn6RusHM-kZ11ruRr0fqPdXUSpKwah6BvVo10Rxv6iF4vp08je-z6ePdw_hmmmlKUJdRIUhOuOalpmWJa6x4JWqaQ8UY4axAUBhWlRrmRYlKWGmEuCFME5V0uiTkEFytfdu-XJhKG5f2bGQb7EKFD-mVlb8nzr7ImX-TCOYMUoGSw_nGIfjX3sROLmzUpmmUM76PEgtUYJ6Tgib07A86931w6X9LSjABKRSJwmtKBx9jMPV2GwTlMiG5TkimhOQqIVkk0enPf2wlX5EkgKyBmEZuZsL32__YfgJj2Zxw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Cheng, Yating</creator><creator>Song, Hongjun</creator><creator>Ming, Guo-li</creator><creator>Weng, Yi-Lan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6175-0401</orcidid><orcidid>https://orcid.org/0000-0002-8720-5310</orcidid><orcidid>https://orcid.org/0000-0002-2517-6075</orcidid></search><sort><creationdate>20230401</creationdate><title>Epigenetic and epitranscriptomic regulation of axon regeneration</title><author>Cheng, Yating ; Song, Hongjun ; Ming, Guo-li ; Weng, Yi-Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-4883637c7bc4bb2f2a7d8f460a553759108e5dbc069b1b0dc117e35c3a836cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>38/39</topic><topic>38/91</topic><topic>45</topic><topic>45/15</topic><topic>631/337</topic><topic>631/378</topic><topic>64/60</topic><topic>82/80</topic><topic>Animals</topic><topic>Axons</topic><topic>Axons - metabolism</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Brain Injuries - metabolism</topic><topic>Brain injury</topic><topic>Central Nervous System</topic><topic>Epigenesis, Genetic - genetics</topic><topic>Epigenetics</topic><topic>Expert Review</topic><topic>Gene expression</topic><topic>Histones</topic><topic>Humans</topic><topic>Mammals</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mental disorders</topic><topic>Microenvironments</topic><topic>Nerve Regeneration - genetics</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Pharmacotherapy</topic><topic>Psychiatry</topic><topic>Recovery of function</topic><topic>Regeneration</topic><topic>Therapeutic applications</topic><topic>Transcriptomics</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yating</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Ming, Guo-li</creatorcontrib><creatorcontrib>Weng, Yi-Lan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yating</au><au>Song, Hongjun</au><au>Ming, Guo-li</au><au>Weng, Yi-Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigenetic and epitranscriptomic regulation of axon regeneration</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>28</volume><issue>4</issue><spage>1440</spage><epage>1450</epage><pages>1440-1450</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>Effective axonal regeneration in the adult mammalian nervous system requires coordination of elevated intrinsic growth capacity and decreased responses to the inhibitory environment. Intrinsic regenerative capacity largely depends on the gene regulatory network and protein translation machinery. A failure to activate these pathways upon injury is underlying a lack of robust axon regeneration in the mature mammalian central nervous system. Epigenetics and epitranscriptomics are key regulatory mechanisms that shape gene expression and protein translation. Here, we provide an overview of different types of modifications on DNA, histones, and RNA, underpinning the regenerative competence of axons in the mature mammalian peripheral and central nervous systems. We highlight other non-neuronal cells and their epigenetic changes in determining the microenvironment for tissue repair and axon regeneration. We also address advancements of single-cell technology in charting transcriptomic and epigenetic landscapes that may further facilitate the mechanistic understanding of differential regenerative capacity in neuronal subtypes. Finally, as epigenetic and epitranscriptomic processes are commonly affected by brain injuries and psychiatric disorders, understanding their alterations upon brain injury would provide unprecedented mechanistic insights into etiology of injury-associated-psychiatric disorders and facilitate the development of therapeutic interventions to restore brain function.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36922674</pmid><doi>10.1038/s41380-023-02028-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6175-0401</orcidid><orcidid>https://orcid.org/0000-0002-8720-5310</orcidid><orcidid>https://orcid.org/0000-0002-2517-6075</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4184 |
ispartof | Molecular psychiatry, 2023-04, Vol.28 (4), p.1440-1450 |
issn | 1359-4184 1476-5578 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10650481 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 38/39 38/91 45 45/15 631/337 631/378 64/60 82/80 Animals Axons Axons - metabolism Behavioral Sciences Biological Psychology Brain Injuries - metabolism Brain injury Central Nervous System Epigenesis, Genetic - genetics Epigenetics Expert Review Gene expression Histones Humans Mammals Medicine Medicine & Public Health Mental disorders Microenvironments Nerve Regeneration - genetics Nervous system Neurons Neurosciences Pharmacotherapy Psychiatry Recovery of function Regeneration Therapeutic applications Transcriptomics Translation |
title | Epigenetic and epitranscriptomic regulation of axon regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigenetic%20and%20epitranscriptomic%20regulation%20of%20axon%20regeneration&rft.jtitle=Molecular%20psychiatry&rft.au=Cheng,%20Yating&rft.date=2023-04-01&rft.volume=28&rft.issue=4&rft.spage=1440&rft.epage=1450&rft.pages=1440-1450&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/s41380-023-02028-9&rft_dat=%3Cproquest_pubme%3E2818580408%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818580408&rft_id=info:pmid/36922674&rfr_iscdi=true |