Epigenetic and epitranscriptomic regulation of axon regeneration

Effective axonal regeneration in the adult mammalian nervous system requires coordination of elevated intrinsic growth capacity and decreased responses to the inhibitory environment. Intrinsic regenerative capacity largely depends on the gene regulatory network and protein translation machinery. A f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular psychiatry 2023-04, Vol.28 (4), p.1440-1450
Hauptverfasser: Cheng, Yating, Song, Hongjun, Ming, Guo-li, Weng, Yi-Lan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1450
container_issue 4
container_start_page 1440
container_title Molecular psychiatry
container_volume 28
creator Cheng, Yating
Song, Hongjun
Ming, Guo-li
Weng, Yi-Lan
description Effective axonal regeneration in the adult mammalian nervous system requires coordination of elevated intrinsic growth capacity and decreased responses to the inhibitory environment. Intrinsic regenerative capacity largely depends on the gene regulatory network and protein translation machinery. A failure to activate these pathways upon injury is underlying a lack of robust axon regeneration in the mature mammalian central nervous system. Epigenetics and epitranscriptomics are key regulatory mechanisms that shape gene expression and protein translation. Here, we provide an overview of different types of modifications on DNA, histones, and RNA, underpinning the regenerative competence of axons in the mature mammalian peripheral and central nervous systems. We highlight other non-neuronal cells and their epigenetic changes in determining the microenvironment for tissue repair and axon regeneration. We also address advancements of single-cell technology in charting transcriptomic and epigenetic landscapes that may further facilitate the mechanistic understanding of differential regenerative capacity in neuronal subtypes. Finally, as epigenetic and epitranscriptomic processes are commonly affected by brain injuries and psychiatric disorders, understanding their alterations upon brain injury would provide unprecedented mechanistic insights into etiology of injury-associated-psychiatric disorders and facilitate the development of therapeutic interventions to restore brain function.
doi_str_mv 10.1038/s41380-023-02028-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10650481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818580408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-4883637c7bc4bb2f2a7d8f460a553759108e5dbc069b1b0dc117e35c3a836cb33</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0EomX5AxxQJS5cAl5j5wSoKotUiQucLcdxiqvUDnaC4N_jLpTlwMEaa-Z7z2M9AE4QvECQiMtIEREwg5ikA7HIih0wRJTnGWNc7KY7YUVGkaADcBDjHMLlkO2DAckLjHNOh-B60tqZcaazeqRcNTKt7YJyUQfbdn6RusHM-kZ11ruRr0fqPdXUSpKwah6BvVo10Rxv6iF4vp08je-z6ePdw_hmmmlKUJdRIUhOuOalpmWJa6x4JWqaQ8UY4axAUBhWlRrmRYlKWGmEuCFME5V0uiTkEFytfdu-XJhKG5f2bGQb7EKFD-mVlb8nzr7ImX-TCOYMUoGSw_nGIfjX3sROLmzUpmmUM76PEgtUYJ6Tgib07A86931w6X9LSjABKRSJwmtKBx9jMPV2GwTlMiG5TkimhOQqIVkk0enPf2wlX5EkgKyBmEZuZsL32__YfgJj2Zxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818580408</pqid></control><display><type>article</type><title>Epigenetic and epitranscriptomic regulation of axon regeneration</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cheng, Yating ; Song, Hongjun ; Ming, Guo-li ; Weng, Yi-Lan</creator><creatorcontrib>Cheng, Yating ; Song, Hongjun ; Ming, Guo-li ; Weng, Yi-Lan</creatorcontrib><description>Effective axonal regeneration in the adult mammalian nervous system requires coordination of elevated intrinsic growth capacity and decreased responses to the inhibitory environment. Intrinsic regenerative capacity largely depends on the gene regulatory network and protein translation machinery. A failure to activate these pathways upon injury is underlying a lack of robust axon regeneration in the mature mammalian central nervous system. Epigenetics and epitranscriptomics are key regulatory mechanisms that shape gene expression and protein translation. Here, we provide an overview of different types of modifications on DNA, histones, and RNA, underpinning the regenerative competence of axons in the mature mammalian peripheral and central nervous systems. We highlight other non-neuronal cells and their epigenetic changes in determining the microenvironment for tissue repair and axon regeneration. We also address advancements of single-cell technology in charting transcriptomic and epigenetic landscapes that may further facilitate the mechanistic understanding of differential regenerative capacity in neuronal subtypes. Finally, as epigenetic and epitranscriptomic processes are commonly affected by brain injuries and psychiatric disorders, understanding their alterations upon brain injury would provide unprecedented mechanistic insights into etiology of injury-associated-psychiatric disorders and facilitate the development of therapeutic interventions to restore brain function.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/s41380-023-02028-9</identifier><identifier>PMID: 36922674</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 38/91 ; 45 ; 45/15 ; 631/337 ; 631/378 ; 64/60 ; 82/80 ; Animals ; Axons ; Axons - metabolism ; Behavioral Sciences ; Biological Psychology ; Brain Injuries - metabolism ; Brain injury ; Central Nervous System ; Epigenesis, Genetic - genetics ; Epigenetics ; Expert Review ; Gene expression ; Histones ; Humans ; Mammals ; Medicine ; Medicine &amp; Public Health ; Mental disorders ; Microenvironments ; Nerve Regeneration - genetics ; Nervous system ; Neurons ; Neurosciences ; Pharmacotherapy ; Psychiatry ; Recovery of function ; Regeneration ; Therapeutic applications ; Transcriptomics ; Translation</subject><ispartof>Molecular psychiatry, 2023-04, Vol.28 (4), p.1440-1450</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-4883637c7bc4bb2f2a7d8f460a553759108e5dbc069b1b0dc117e35c3a836cb33</citedby><cites>FETCH-LOGICAL-c431t-4883637c7bc4bb2f2a7d8f460a553759108e5dbc069b1b0dc117e35c3a836cb33</cites><orcidid>0000-0001-6175-0401 ; 0000-0002-8720-5310 ; 0000-0002-2517-6075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41380-023-02028-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41380-023-02028-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36922674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Yating</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Ming, Guo-li</creatorcontrib><creatorcontrib>Weng, Yi-Lan</creatorcontrib><title>Epigenetic and epitranscriptomic regulation of axon regeneration</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Effective axonal regeneration in the adult mammalian nervous system requires coordination of elevated intrinsic growth capacity and decreased responses to the inhibitory environment. Intrinsic regenerative capacity largely depends on the gene regulatory network and protein translation machinery. A failure to activate these pathways upon injury is underlying a lack of robust axon regeneration in the mature mammalian central nervous system. Epigenetics and epitranscriptomics are key regulatory mechanisms that shape gene expression and protein translation. Here, we provide an overview of different types of modifications on DNA, histones, and RNA, underpinning the regenerative competence of axons in the mature mammalian peripheral and central nervous systems. We highlight other non-neuronal cells and their epigenetic changes in determining the microenvironment for tissue repair and axon regeneration. We also address advancements of single-cell technology in charting transcriptomic and epigenetic landscapes that may further facilitate the mechanistic understanding of differential regenerative capacity in neuronal subtypes. Finally, as epigenetic and epitranscriptomic processes are commonly affected by brain injuries and psychiatric disorders, understanding their alterations upon brain injury would provide unprecedented mechanistic insights into etiology of injury-associated-psychiatric disorders and facilitate the development of therapeutic interventions to restore brain function.</description><subject>38/39</subject><subject>38/91</subject><subject>45</subject><subject>45/15</subject><subject>631/337</subject><subject>631/378</subject><subject>64/60</subject><subject>82/80</subject><subject>Animals</subject><subject>Axons</subject><subject>Axons - metabolism</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Brain Injuries - metabolism</subject><subject>Brain injury</subject><subject>Central Nervous System</subject><subject>Epigenesis, Genetic - genetics</subject><subject>Epigenetics</subject><subject>Expert Review</subject><subject>Gene expression</subject><subject>Histones</subject><subject>Humans</subject><subject>Mammals</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mental disorders</subject><subject>Microenvironments</subject><subject>Nerve Regeneration - genetics</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Pharmacotherapy</subject><subject>Psychiatry</subject><subject>Recovery of function</subject><subject>Regeneration</subject><subject>Therapeutic applications</subject><subject>Transcriptomics</subject><subject>Translation</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUlPwzAQhS0EomX5AxxQJS5cAl5j5wSoKotUiQucLcdxiqvUDnaC4N_jLpTlwMEaa-Z7z2M9AE4QvECQiMtIEREwg5ikA7HIih0wRJTnGWNc7KY7YUVGkaADcBDjHMLlkO2DAckLjHNOh-B60tqZcaazeqRcNTKt7YJyUQfbdn6RusHM-kZ11ruRr0fqPdXUSpKwah6BvVo10Rxv6iF4vp08je-z6ePdw_hmmmlKUJdRIUhOuOalpmWJa6x4JWqaQ8UY4axAUBhWlRrmRYlKWGmEuCFME5V0uiTkEFytfdu-XJhKG5f2bGQb7EKFD-mVlb8nzr7ImX-TCOYMUoGSw_nGIfjX3sROLmzUpmmUM76PEgtUYJ6Tgib07A86931w6X9LSjABKRSJwmtKBx9jMPV2GwTlMiG5TkimhOQqIVkk0enPf2wlX5EkgKyBmEZuZsL32__YfgJj2Zxw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Cheng, Yating</creator><creator>Song, Hongjun</creator><creator>Ming, Guo-li</creator><creator>Weng, Yi-Lan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6175-0401</orcidid><orcidid>https://orcid.org/0000-0002-8720-5310</orcidid><orcidid>https://orcid.org/0000-0002-2517-6075</orcidid></search><sort><creationdate>20230401</creationdate><title>Epigenetic and epitranscriptomic regulation of axon regeneration</title><author>Cheng, Yating ; Song, Hongjun ; Ming, Guo-li ; Weng, Yi-Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-4883637c7bc4bb2f2a7d8f460a553759108e5dbc069b1b0dc117e35c3a836cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>38/39</topic><topic>38/91</topic><topic>45</topic><topic>45/15</topic><topic>631/337</topic><topic>631/378</topic><topic>64/60</topic><topic>82/80</topic><topic>Animals</topic><topic>Axons</topic><topic>Axons - metabolism</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Brain Injuries - metabolism</topic><topic>Brain injury</topic><topic>Central Nervous System</topic><topic>Epigenesis, Genetic - genetics</topic><topic>Epigenetics</topic><topic>Expert Review</topic><topic>Gene expression</topic><topic>Histones</topic><topic>Humans</topic><topic>Mammals</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mental disorders</topic><topic>Microenvironments</topic><topic>Nerve Regeneration - genetics</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Pharmacotherapy</topic><topic>Psychiatry</topic><topic>Recovery of function</topic><topic>Regeneration</topic><topic>Therapeutic applications</topic><topic>Transcriptomics</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yating</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Ming, Guo-li</creatorcontrib><creatorcontrib>Weng, Yi-Lan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yating</au><au>Song, Hongjun</au><au>Ming, Guo-li</au><au>Weng, Yi-Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigenetic and epitranscriptomic regulation of axon regeneration</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>28</volume><issue>4</issue><spage>1440</spage><epage>1450</epage><pages>1440-1450</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>Effective axonal regeneration in the adult mammalian nervous system requires coordination of elevated intrinsic growth capacity and decreased responses to the inhibitory environment. Intrinsic regenerative capacity largely depends on the gene regulatory network and protein translation machinery. A failure to activate these pathways upon injury is underlying a lack of robust axon regeneration in the mature mammalian central nervous system. Epigenetics and epitranscriptomics are key regulatory mechanisms that shape gene expression and protein translation. Here, we provide an overview of different types of modifications on DNA, histones, and RNA, underpinning the regenerative competence of axons in the mature mammalian peripheral and central nervous systems. We highlight other non-neuronal cells and their epigenetic changes in determining the microenvironment for tissue repair and axon regeneration. We also address advancements of single-cell technology in charting transcriptomic and epigenetic landscapes that may further facilitate the mechanistic understanding of differential regenerative capacity in neuronal subtypes. Finally, as epigenetic and epitranscriptomic processes are commonly affected by brain injuries and psychiatric disorders, understanding their alterations upon brain injury would provide unprecedented mechanistic insights into etiology of injury-associated-psychiatric disorders and facilitate the development of therapeutic interventions to restore brain function.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36922674</pmid><doi>10.1038/s41380-023-02028-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6175-0401</orcidid><orcidid>https://orcid.org/0000-0002-8720-5310</orcidid><orcidid>https://orcid.org/0000-0002-2517-6075</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-4184
ispartof Molecular psychiatry, 2023-04, Vol.28 (4), p.1440-1450
issn 1359-4184
1476-5578
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10650481
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 38/39
38/91
45
45/15
631/337
631/378
64/60
82/80
Animals
Axons
Axons - metabolism
Behavioral Sciences
Biological Psychology
Brain Injuries - metabolism
Brain injury
Central Nervous System
Epigenesis, Genetic - genetics
Epigenetics
Expert Review
Gene expression
Histones
Humans
Mammals
Medicine
Medicine & Public Health
Mental disorders
Microenvironments
Nerve Regeneration - genetics
Nervous system
Neurons
Neurosciences
Pharmacotherapy
Psychiatry
Recovery of function
Regeneration
Therapeutic applications
Transcriptomics
Translation
title Epigenetic and epitranscriptomic regulation of axon regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigenetic%20and%20epitranscriptomic%20regulation%20of%20axon%20regeneration&rft.jtitle=Molecular%20psychiatry&rft.au=Cheng,%20Yating&rft.date=2023-04-01&rft.volume=28&rft.issue=4&rft.spage=1440&rft.epage=1450&rft.pages=1440-1450&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/s41380-023-02028-9&rft_dat=%3Cproquest_pubme%3E2818580408%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818580408&rft_id=info:pmid/36922674&rfr_iscdi=true