The role of flow in the self-assembly of dragline spider silk proteins

Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2023-11, Vol.122 (21), p.4241-4253
Hauptverfasser: Herrera-Rodríguez, Ana M., Dasanna, Anil Kumar, Daday, Csaba, Cruz-Chú, Eduardo R., Aponte-Santamaría, Camilo, Schwarz, Ulrich S., Gräter, Frauke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4253
container_issue 21
container_start_page 4241
container_title Biophysical journal
container_volume 122
creator Herrera-Rodríguez, Ana M.
Dasanna, Anil Kumar
Daday, Csaba
Cruz-Chú, Eduardo R.
Aponte-Santamaría, Camilo
Schwarz, Ulrich S.
Gräter, Frauke
description Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained molecular dynamics simulations with uniform flow. The conformational changes at the molecular level were analyzed for single-tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues into β sheet and poly-proline II conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%–80%), assembly slows down and becomes reversible with frequent association and dissociation events, whereas spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant also for other proteins whose function depends on hydrodynamic flow.
doi_str_mv 10.1016/j.bpj.2023.09.020
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10645567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349523006240</els_id><sourcerecordid>2874264087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-4cf3825e4b1f09e0568657c43ca8a244e796d3cff7ce84d9c92996032b1210ca3</originalsourceid><addsrcrecordid>eNp9UU1P3DAQtSqqsqX9Ab2gHLkkHTuOY4tDVSGglZC40LPlOGPw1hsHOwvi3-PVAmovnEaa9zGj9wj5RqGhQMX3dTPM64YBaxtQDTD4QFa046wGkOKArABA1C1X3SH5nPMagLIO6Cdy2PYSWsnkilzc3GGVYsAqusqF-Fj5qVrKLmNwtckZN0N42oFjMrfBTwWZ_Yipyj78reYUF_RT_kI-OhMyfn2ZR-TPxfnN2a_66vry99nPq9py4EvNrStnO-QDdaAQOiFF11veWiMN4xx7JcbWOtdblHxUVjGlBLRsoIyCNe0R-bH3nbfDBkeL05JM0HPyG5OedDRe_49M_k7fxgdNQfCuE31xOHlxSPF-i3nRG58thmAmjNusmew5Exzkjkr3VJtizgnd2x0KeleAXutSgN4VoEHpUkDRHP_74JviNfFCON0TsMT04DHpbD1OFkef0C56jP4d-2eYhpZa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874264087</pqid></control><display><type>article</type><title>The role of flow in the self-assembly of dragline spider silk proteins</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Herrera-Rodríguez, Ana M. ; Dasanna, Anil Kumar ; Daday, Csaba ; Cruz-Chú, Eduardo R. ; Aponte-Santamaría, Camilo ; Schwarz, Ulrich S. ; Gräter, Frauke</creator><creatorcontrib>Herrera-Rodríguez, Ana M. ; Dasanna, Anil Kumar ; Daday, Csaba ; Cruz-Chú, Eduardo R. ; Aponte-Santamaría, Camilo ; Schwarz, Ulrich S. ; Gräter, Frauke</creatorcontrib><description>Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained molecular dynamics simulations with uniform flow. The conformational changes at the molecular level were analyzed for single-tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues into β sheet and poly-proline II conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%–80%), assembly slows down and becomes reversible with frequent association and dissociation events, whereas spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant also for other proteins whose function depends on hydrodynamic flow.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2023.09.020</identifier><identifier>PMID: 37803828</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alanine ; Arthropod Proteins - chemistry ; Fibroins - chemistry ; Peptides ; Silk - chemistry ; Silk - metabolism</subject><ispartof>Biophysical journal, 2023-11, Vol.122 (21), p.4241-4253</ispartof><rights>2023 Biophysical Society</rights><rights>Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 Biophysical Society. 2023 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-4cf3825e4b1f09e0568657c43ca8a244e796d3cff7ce84d9c92996032b1210ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645567/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349523006240$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37803828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrera-Rodríguez, Ana M.</creatorcontrib><creatorcontrib>Dasanna, Anil Kumar</creatorcontrib><creatorcontrib>Daday, Csaba</creatorcontrib><creatorcontrib>Cruz-Chú, Eduardo R.</creatorcontrib><creatorcontrib>Aponte-Santamaría, Camilo</creatorcontrib><creatorcontrib>Schwarz, Ulrich S.</creatorcontrib><creatorcontrib>Gräter, Frauke</creatorcontrib><title>The role of flow in the self-assembly of dragline spider silk proteins</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained molecular dynamics simulations with uniform flow. The conformational changes at the molecular level were analyzed for single-tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues into β sheet and poly-proline II conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%–80%), assembly slows down and becomes reversible with frequent association and dissociation events, whereas spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant also for other proteins whose function depends on hydrodynamic flow.</description><subject>Alanine</subject><subject>Arthropod Proteins - chemistry</subject><subject>Fibroins - chemistry</subject><subject>Peptides</subject><subject>Silk - chemistry</subject><subject>Silk - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1P3DAQtSqqsqX9Ab2gHLkkHTuOY4tDVSGglZC40LPlOGPw1hsHOwvi3-PVAmovnEaa9zGj9wj5RqGhQMX3dTPM64YBaxtQDTD4QFa046wGkOKArABA1C1X3SH5nPMagLIO6Cdy2PYSWsnkilzc3GGVYsAqusqF-Fj5qVrKLmNwtckZN0N42oFjMrfBTwWZ_Yipyj78reYUF_RT_kI-OhMyfn2ZR-TPxfnN2a_66vry99nPq9py4EvNrStnO-QDdaAQOiFF11veWiMN4xx7JcbWOtdblHxUVjGlBLRsoIyCNe0R-bH3nbfDBkeL05JM0HPyG5OedDRe_49M_k7fxgdNQfCuE31xOHlxSPF-i3nRG58thmAmjNusmew5Exzkjkr3VJtizgnd2x0KeleAXutSgN4VoEHpUkDRHP_74JviNfFCON0TsMT04DHpbD1OFkef0C56jP4d-2eYhpZa</recordid><startdate>20231107</startdate><enddate>20231107</enddate><creator>Herrera-Rodríguez, Ana M.</creator><creator>Dasanna, Anil Kumar</creator><creator>Daday, Csaba</creator><creator>Cruz-Chú, Eduardo R.</creator><creator>Aponte-Santamaría, Camilo</creator><creator>Schwarz, Ulrich S.</creator><creator>Gräter, Frauke</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231107</creationdate><title>The role of flow in the self-assembly of dragline spider silk proteins</title><author>Herrera-Rodríguez, Ana M. ; Dasanna, Anil Kumar ; Daday, Csaba ; Cruz-Chú, Eduardo R. ; Aponte-Santamaría, Camilo ; Schwarz, Ulrich S. ; Gräter, Frauke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-4cf3825e4b1f09e0568657c43ca8a244e796d3cff7ce84d9c92996032b1210ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alanine</topic><topic>Arthropod Proteins - chemistry</topic><topic>Fibroins - chemistry</topic><topic>Peptides</topic><topic>Silk - chemistry</topic><topic>Silk - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera-Rodríguez, Ana M.</creatorcontrib><creatorcontrib>Dasanna, Anil Kumar</creatorcontrib><creatorcontrib>Daday, Csaba</creatorcontrib><creatorcontrib>Cruz-Chú, Eduardo R.</creatorcontrib><creatorcontrib>Aponte-Santamaría, Camilo</creatorcontrib><creatorcontrib>Schwarz, Ulrich S.</creatorcontrib><creatorcontrib>Gräter, Frauke</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera-Rodríguez, Ana M.</au><au>Dasanna, Anil Kumar</au><au>Daday, Csaba</au><au>Cruz-Chú, Eduardo R.</au><au>Aponte-Santamaría, Camilo</au><au>Schwarz, Ulrich S.</au><au>Gräter, Frauke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of flow in the self-assembly of dragline spider silk proteins</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2023-11-07</date><risdate>2023</risdate><volume>122</volume><issue>21</issue><spage>4241</spage><epage>4253</epage><pages>4241-4253</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained molecular dynamics simulations with uniform flow. The conformational changes at the molecular level were analyzed for single-tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues into β sheet and poly-proline II conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%–80%), assembly slows down and becomes reversible with frequent association and dissociation events, whereas spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant also for other proteins whose function depends on hydrodynamic flow.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37803828</pmid><doi>10.1016/j.bpj.2023.09.020</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2023-11, Vol.122 (21), p.4241-4253
issn 0006-3495
1542-0086
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10645567
source MEDLINE; ScienceDirect Journals (5 years ago - present); Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Alanine
Arthropod Proteins - chemistry
Fibroins - chemistry
Peptides
Silk - chemistry
Silk - metabolism
title The role of flow in the self-assembly of dragline spider silk proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20flow%20in%20the%20self-assembly%20of%20dragline%20spider%20silk%20proteins&rft.jtitle=Biophysical%20journal&rft.au=Herrera-Rodr%C3%ADguez,%20Ana%20M.&rft.date=2023-11-07&rft.volume=122&rft.issue=21&rft.spage=4241&rft.epage=4253&rft.pages=4241-4253&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2023.09.020&rft_dat=%3Cproquest_pubme%3E2874264087%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874264087&rft_id=info:pmid/37803828&rft_els_id=S0006349523006240&rfr_iscdi=true