The role of flow in the self-assembly of dragline spider silk proteins
Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coa...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2023-11, Vol.122 (21), p.4241-4253 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4253 |
---|---|
container_issue | 21 |
container_start_page | 4241 |
container_title | Biophysical journal |
container_volume | 122 |
creator | Herrera-Rodríguez, Ana M. Dasanna, Anil Kumar Daday, Csaba Cruz-Chú, Eduardo R. Aponte-Santamaría, Camilo Schwarz, Ulrich S. Gräter, Frauke |
description | Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained molecular dynamics simulations with uniform flow. The conformational changes at the molecular level were analyzed for single-tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues into β sheet and poly-proline II conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%–80%), assembly slows down and becomes reversible with frequent association and dissociation events, whereas spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant also for other proteins whose function depends on hydrodynamic flow. |
doi_str_mv | 10.1016/j.bpj.2023.09.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10645567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349523006240</els_id><sourcerecordid>2874264087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-4cf3825e4b1f09e0568657c43ca8a244e796d3cff7ce84d9c92996032b1210ca3</originalsourceid><addsrcrecordid>eNp9UU1P3DAQtSqqsqX9Ab2gHLkkHTuOY4tDVSGglZC40LPlOGPw1hsHOwvi3-PVAmovnEaa9zGj9wj5RqGhQMX3dTPM64YBaxtQDTD4QFa046wGkOKArABA1C1X3SH5nPMagLIO6Cdy2PYSWsnkilzc3GGVYsAqusqF-Fj5qVrKLmNwtckZN0N42oFjMrfBTwWZ_Yipyj78reYUF_RT_kI-OhMyfn2ZR-TPxfnN2a_66vry99nPq9py4EvNrStnO-QDdaAQOiFF11veWiMN4xx7JcbWOtdblHxUVjGlBLRsoIyCNe0R-bH3nbfDBkeL05JM0HPyG5OedDRe_49M_k7fxgdNQfCuE31xOHlxSPF-i3nRG58thmAmjNusmew5Exzkjkr3VJtizgnd2x0KeleAXutSgN4VoEHpUkDRHP_74JviNfFCON0TsMT04DHpbD1OFkef0C56jP4d-2eYhpZa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874264087</pqid></control><display><type>article</type><title>The role of flow in the self-assembly of dragline spider silk proteins</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Herrera-Rodríguez, Ana M. ; Dasanna, Anil Kumar ; Daday, Csaba ; Cruz-Chú, Eduardo R. ; Aponte-Santamaría, Camilo ; Schwarz, Ulrich S. ; Gräter, Frauke</creator><creatorcontrib>Herrera-Rodríguez, Ana M. ; Dasanna, Anil Kumar ; Daday, Csaba ; Cruz-Chú, Eduardo R. ; Aponte-Santamaría, Camilo ; Schwarz, Ulrich S. ; Gräter, Frauke</creatorcontrib><description>Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained molecular dynamics simulations with uniform flow. The conformational changes at the molecular level were analyzed for single-tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues into β sheet and poly-proline II conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%–80%), assembly slows down and becomes reversible with frequent association and dissociation events, whereas spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant also for other proteins whose function depends on hydrodynamic flow.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2023.09.020</identifier><identifier>PMID: 37803828</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alanine ; Arthropod Proteins - chemistry ; Fibroins - chemistry ; Peptides ; Silk - chemistry ; Silk - metabolism</subject><ispartof>Biophysical journal, 2023-11, Vol.122 (21), p.4241-4253</ispartof><rights>2023 Biophysical Society</rights><rights>Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 Biophysical Society. 2023 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-4cf3825e4b1f09e0568657c43ca8a244e796d3cff7ce84d9c92996032b1210ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645567/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349523006240$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37803828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrera-Rodríguez, Ana M.</creatorcontrib><creatorcontrib>Dasanna, Anil Kumar</creatorcontrib><creatorcontrib>Daday, Csaba</creatorcontrib><creatorcontrib>Cruz-Chú, Eduardo R.</creatorcontrib><creatorcontrib>Aponte-Santamaría, Camilo</creatorcontrib><creatorcontrib>Schwarz, Ulrich S.</creatorcontrib><creatorcontrib>Gräter, Frauke</creatorcontrib><title>The role of flow in the self-assembly of dragline spider silk proteins</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained molecular dynamics simulations with uniform flow. The conformational changes at the molecular level were analyzed for single-tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues into β sheet and poly-proline II conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%–80%), assembly slows down and becomes reversible with frequent association and dissociation events, whereas spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant also for other proteins whose function depends on hydrodynamic flow.</description><subject>Alanine</subject><subject>Arthropod Proteins - chemistry</subject><subject>Fibroins - chemistry</subject><subject>Peptides</subject><subject>Silk - chemistry</subject><subject>Silk - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1P3DAQtSqqsqX9Ab2gHLkkHTuOY4tDVSGglZC40LPlOGPw1hsHOwvi3-PVAmovnEaa9zGj9wj5RqGhQMX3dTPM64YBaxtQDTD4QFa046wGkOKArABA1C1X3SH5nPMagLIO6Cdy2PYSWsnkilzc3GGVYsAqusqF-Fj5qVrKLmNwtckZN0N42oFjMrfBTwWZ_Yipyj78reYUF_RT_kI-OhMyfn2ZR-TPxfnN2a_66vry99nPq9py4EvNrStnO-QDdaAQOiFF11veWiMN4xx7JcbWOtdblHxUVjGlBLRsoIyCNe0R-bH3nbfDBkeL05JM0HPyG5OedDRe_49M_k7fxgdNQfCuE31xOHlxSPF-i3nRG58thmAmjNusmew5Exzkjkr3VJtizgnd2x0KeleAXutSgN4VoEHpUkDRHP_74JviNfFCON0TsMT04DHpbD1OFkef0C56jP4d-2eYhpZa</recordid><startdate>20231107</startdate><enddate>20231107</enddate><creator>Herrera-Rodríguez, Ana M.</creator><creator>Dasanna, Anil Kumar</creator><creator>Daday, Csaba</creator><creator>Cruz-Chú, Eduardo R.</creator><creator>Aponte-Santamaría, Camilo</creator><creator>Schwarz, Ulrich S.</creator><creator>Gräter, Frauke</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231107</creationdate><title>The role of flow in the self-assembly of dragline spider silk proteins</title><author>Herrera-Rodríguez, Ana M. ; Dasanna, Anil Kumar ; Daday, Csaba ; Cruz-Chú, Eduardo R. ; Aponte-Santamaría, Camilo ; Schwarz, Ulrich S. ; Gräter, Frauke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-4cf3825e4b1f09e0568657c43ca8a244e796d3cff7ce84d9c92996032b1210ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alanine</topic><topic>Arthropod Proteins - chemistry</topic><topic>Fibroins - chemistry</topic><topic>Peptides</topic><topic>Silk - chemistry</topic><topic>Silk - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera-Rodríguez, Ana M.</creatorcontrib><creatorcontrib>Dasanna, Anil Kumar</creatorcontrib><creatorcontrib>Daday, Csaba</creatorcontrib><creatorcontrib>Cruz-Chú, Eduardo R.</creatorcontrib><creatorcontrib>Aponte-Santamaría, Camilo</creatorcontrib><creatorcontrib>Schwarz, Ulrich S.</creatorcontrib><creatorcontrib>Gräter, Frauke</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera-Rodríguez, Ana M.</au><au>Dasanna, Anil Kumar</au><au>Daday, Csaba</au><au>Cruz-Chú, Eduardo R.</au><au>Aponte-Santamaría, Camilo</au><au>Schwarz, Ulrich S.</au><au>Gräter, Frauke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of flow in the self-assembly of dragline spider silk proteins</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2023-11-07</date><risdate>2023</risdate><volume>122</volume><issue>21</issue><spage>4241</spage><epage>4253</epage><pages>4241-4253</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained molecular dynamics simulations with uniform flow. The conformational changes at the molecular level were analyzed for single-tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues into β sheet and poly-proline II conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%–80%), assembly slows down and becomes reversible with frequent association and dissociation events, whereas spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant also for other proteins whose function depends on hydrodynamic flow.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37803828</pmid><doi>10.1016/j.bpj.2023.09.020</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2023-11, Vol.122 (21), p.4241-4253 |
issn | 0006-3495 1542-0086 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10645567 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Alanine Arthropod Proteins - chemistry Fibroins - chemistry Peptides Silk - chemistry Silk - metabolism |
title | The role of flow in the self-assembly of dragline spider silk proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20flow%20in%20the%20self-assembly%20of%20dragline%20spider%20silk%20proteins&rft.jtitle=Biophysical%20journal&rft.au=Herrera-Rodr%C3%ADguez,%20Ana%20M.&rft.date=2023-11-07&rft.volume=122&rft.issue=21&rft.spage=4241&rft.epage=4253&rft.pages=4241-4253&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2023.09.020&rft_dat=%3Cproquest_pubme%3E2874264087%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874264087&rft_id=info:pmid/37803828&rft_els_id=S0006349523006240&rfr_iscdi=true |