Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg

Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2023-10, Vol.111 (20), p.3230-3243.e14
Hauptverfasser: Mamiya, Akira, Sustar, Anne, Siwanowicz, Igor, Qi, Yanyan, Lu, Tzu-Chiao, Gurung, Pralaksha, Chen, Chenghao, Phelps, Jasper S., Kuan, Aaron T., Pacureanu, Alexandra, Lee, Wei-Chung Allen, Li, Hongjie, Mhatre, Natasha, Tuthill, John C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3243.e14
container_issue 20
container_start_page 3230
container_title Neuron (Cambridge, Mass.)
container_volume 111
creator Mamiya, Akira
Sustar, Anne
Siwanowicz, Igor
Qi, Yanyan
Lu, Tzu-Chiao
Gurung, Pralaksha
Chen, Chenghao
Phelps, Jasper S.
Kuan, Aaron T.
Pacureanu, Alexandra
Lee, Wei-Chung Allen
Li, Hongjie
Mhatre, Natasha
Tuthill, John C.
description Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems. [Display omitted] •Proprioceptors in the Drosophila leg are organized into three groups•Each group is biomechanically specialized to detect distinct features of leg joint kinematics•A mechanical doohickey in the femur decomposes tibia joint movements into orthogonal components•The cell bodies of position-tuned proprioceptors form a goniotopic map of joint angle The sense of self relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Mamiya and colleagues investigate how proprioceptors detect specific mechanical features, such as joint position and movement. They show how feature selectivity arises from the biomechanics of the proprioceptive organ and discover topographic neural maps of leg joint angle and vibration frequency.
doi_str_mv 10.1016/j.neuron.2023.07.009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10644877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627323005421</els_id><sourcerecordid>2850313536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-b6ab9b88c5f541c1bddc8d48603f4c762fc43e659de93b66341032b645e717ab3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCP0DIRy4JdvwVX0BQKCBV4gJny3Emu14ldrCdlfrvcbWlggunkWbeeefjQegVJS0lVL49tgG2FEPbkY61RLWE6CdoR4lWDadaP0U70mvZyE6xC3SZ85EQyoWmz9EFU0J2nIgdgo8-LuAONnhnZxyT3_uQcZzwmuKafHSwlpjwBLZsCXCGGVzxJ1_usA0jLnGN-2TXg3d4sWvGPuByAPwpxRxrdrZ4hv0L9Gyyc4aXD_EK_bz5_OP6a3P7_cu36w-3jeO0L80g7aCHvndiEpw6Ooyj60feS8Im7pTsJscZSKFH0GyQknFKWDdILkBRZQd2hd6ffddtWGB0EEqys6l3LDbdmWi9-bcS_MHs48lQIjnvlaoObx4cUvy1QS5m8dnBPNsAccum6wVhlAkmq5Sfpa7emhNMj3MoMfeIzNGcEZl7RIYoUxHVttd_7_jY9IdJFbw7C6B-6uQhmew8BAejT_X3Zoz-_xN-A29Ap8o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850313536</pqid></control><display><type>article</type><title>Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mamiya, Akira ; Sustar, Anne ; Siwanowicz, Igor ; Qi, Yanyan ; Lu, Tzu-Chiao ; Gurung, Pralaksha ; Chen, Chenghao ; Phelps, Jasper S. ; Kuan, Aaron T. ; Pacureanu, Alexandra ; Lee, Wei-Chung Allen ; Li, Hongjie ; Mhatre, Natasha ; Tuthill, John C.</creator><creatorcontrib>Mamiya, Akira ; Sustar, Anne ; Siwanowicz, Igor ; Qi, Yanyan ; Lu, Tzu-Chiao ; Gurung, Pralaksha ; Chen, Chenghao ; Phelps, Jasper S. ; Kuan, Aaron T. ; Pacureanu, Alexandra ; Lee, Wei-Chung Allen ; Li, Hongjie ; Mhatre, Natasha ; Tuthill, John C.</creatorcontrib><description>Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems. [Display omitted] •Proprioceptors in the Drosophila leg are organized into three groups•Each group is biomechanically specialized to detect distinct features of leg joint kinematics•A mechanical doohickey in the femur decomposes tibia joint movements into orthogonal components•The cell bodies of position-tuned proprioceptors form a goniotopic map of joint angle The sense of self relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Mamiya and colleagues investigate how proprioceptors detect specific mechanical features, such as joint position and movement. They show how feature selectivity arises from the biomechanics of the proprioceptive organ and discover topographic neural maps of leg joint angle and vibration frequency.</description><identifier>ISSN: 0896-6273</identifier><identifier>ISSN: 1097-4199</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2023.07.009</identifier><identifier>PMID: 37562405</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; biomechanics ; Drosophila ; Drosophila - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Ion Channels - metabolism ; locomotion ; mechanosensation ; proprioception ; Proprioception - physiology ; Sensory Receptor Cells - physiology ; somatosensation ; topographic</subject><ispartof>Neuron (Cambridge, Mass.), 2023-10, Vol.111 (20), p.3230-3243.e14</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-b6ab9b88c5f541c1bddc8d48603f4c762fc43e659de93b66341032b645e717ab3</citedby><cites>FETCH-LOGICAL-c418t-b6ab9b88c5f541c1bddc8d48603f4c762fc43e659de93b66341032b645e717ab3</cites><orcidid>0000-0002-5689-5806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2023.07.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37562405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mamiya, Akira</creatorcontrib><creatorcontrib>Sustar, Anne</creatorcontrib><creatorcontrib>Siwanowicz, Igor</creatorcontrib><creatorcontrib>Qi, Yanyan</creatorcontrib><creatorcontrib>Lu, Tzu-Chiao</creatorcontrib><creatorcontrib>Gurung, Pralaksha</creatorcontrib><creatorcontrib>Chen, Chenghao</creatorcontrib><creatorcontrib>Phelps, Jasper S.</creatorcontrib><creatorcontrib>Kuan, Aaron T.</creatorcontrib><creatorcontrib>Pacureanu, Alexandra</creatorcontrib><creatorcontrib>Lee, Wei-Chung Allen</creatorcontrib><creatorcontrib>Li, Hongjie</creatorcontrib><creatorcontrib>Mhatre, Natasha</creatorcontrib><creatorcontrib>Tuthill, John C.</creatorcontrib><title>Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems. [Display omitted] •Proprioceptors in the Drosophila leg are organized into three groups•Each group is biomechanically specialized to detect distinct features of leg joint kinematics•A mechanical doohickey in the femur decomposes tibia joint movements into orthogonal components•The cell bodies of position-tuned proprioceptors form a goniotopic map of joint angle The sense of self relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Mamiya and colleagues investigate how proprioceptors detect specific mechanical features, such as joint position and movement. They show how feature selectivity arises from the biomechanics of the proprioceptive organ and discover topographic neural maps of leg joint angle and vibration frequency.</description><subject>Animals</subject><subject>biomechanics</subject><subject>Drosophila</subject><subject>Drosophila - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Ion Channels - metabolism</subject><subject>locomotion</subject><subject>mechanosensation</subject><subject>proprioception</subject><subject>Proprioception - physiology</subject><subject>Sensory Receptor Cells - physiology</subject><subject>somatosensation</subject><subject>topographic</subject><issn>0896-6273</issn><issn>1097-4199</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EotvCP0DIRy4JdvwVX0BQKCBV4gJny3Emu14ldrCdlfrvcbWlggunkWbeeefjQegVJS0lVL49tgG2FEPbkY61RLWE6CdoR4lWDadaP0U70mvZyE6xC3SZ85EQyoWmz9EFU0J2nIgdgo8-LuAONnhnZxyT3_uQcZzwmuKafHSwlpjwBLZsCXCGGVzxJ1_usA0jLnGN-2TXg3d4sWvGPuByAPwpxRxrdrZ4hv0L9Gyyc4aXD_EK_bz5_OP6a3P7_cu36w-3jeO0L80g7aCHvndiEpw6Ooyj60feS8Im7pTsJscZSKFH0GyQknFKWDdILkBRZQd2hd6ffddtWGB0EEqys6l3LDbdmWi9-bcS_MHs48lQIjnvlaoObx4cUvy1QS5m8dnBPNsAccum6wVhlAkmq5Sfpa7emhNMj3MoMfeIzNGcEZl7RIYoUxHVttd_7_jY9IdJFbw7C6B-6uQhmew8BAejT_X3Zoz-_xN-A29Ap8o</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Mamiya, Akira</creator><creator>Sustar, Anne</creator><creator>Siwanowicz, Igor</creator><creator>Qi, Yanyan</creator><creator>Lu, Tzu-Chiao</creator><creator>Gurung, Pralaksha</creator><creator>Chen, Chenghao</creator><creator>Phelps, Jasper S.</creator><creator>Kuan, Aaron T.</creator><creator>Pacureanu, Alexandra</creator><creator>Lee, Wei-Chung Allen</creator><creator>Li, Hongjie</creator><creator>Mhatre, Natasha</creator><creator>Tuthill, John C.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5689-5806</orcidid></search><sort><creationdate>20231018</creationdate><title>Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg</title><author>Mamiya, Akira ; Sustar, Anne ; Siwanowicz, Igor ; Qi, Yanyan ; Lu, Tzu-Chiao ; Gurung, Pralaksha ; Chen, Chenghao ; Phelps, Jasper S. ; Kuan, Aaron T. ; Pacureanu, Alexandra ; Lee, Wei-Chung Allen ; Li, Hongjie ; Mhatre, Natasha ; Tuthill, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-b6ab9b88c5f541c1bddc8d48603f4c762fc43e659de93b66341032b645e717ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>biomechanics</topic><topic>Drosophila</topic><topic>Drosophila - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Ion Channels - metabolism</topic><topic>locomotion</topic><topic>mechanosensation</topic><topic>proprioception</topic><topic>Proprioception - physiology</topic><topic>Sensory Receptor Cells - physiology</topic><topic>somatosensation</topic><topic>topographic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mamiya, Akira</creatorcontrib><creatorcontrib>Sustar, Anne</creatorcontrib><creatorcontrib>Siwanowicz, Igor</creatorcontrib><creatorcontrib>Qi, Yanyan</creatorcontrib><creatorcontrib>Lu, Tzu-Chiao</creatorcontrib><creatorcontrib>Gurung, Pralaksha</creatorcontrib><creatorcontrib>Chen, Chenghao</creatorcontrib><creatorcontrib>Phelps, Jasper S.</creatorcontrib><creatorcontrib>Kuan, Aaron T.</creatorcontrib><creatorcontrib>Pacureanu, Alexandra</creatorcontrib><creatorcontrib>Lee, Wei-Chung Allen</creatorcontrib><creatorcontrib>Li, Hongjie</creatorcontrib><creatorcontrib>Mhatre, Natasha</creatorcontrib><creatorcontrib>Tuthill, John C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mamiya, Akira</au><au>Sustar, Anne</au><au>Siwanowicz, Igor</au><au>Qi, Yanyan</au><au>Lu, Tzu-Chiao</au><au>Gurung, Pralaksha</au><au>Chen, Chenghao</au><au>Phelps, Jasper S.</au><au>Kuan, Aaron T.</au><au>Pacureanu, Alexandra</au><au>Lee, Wei-Chung Allen</au><au>Li, Hongjie</au><au>Mhatre, Natasha</au><au>Tuthill, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2023-10-18</date><risdate>2023</risdate><volume>111</volume><issue>20</issue><spage>3230</spage><epage>3243.e14</epage><pages>3230-3243.e14</pages><issn>0896-6273</issn><issn>1097-4199</issn><eissn>1097-4199</eissn><abstract>Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems. [Display omitted] •Proprioceptors in the Drosophila leg are organized into three groups•Each group is biomechanically specialized to detect distinct features of leg joint kinematics•A mechanical doohickey in the femur decomposes tibia joint movements into orthogonal components•The cell bodies of position-tuned proprioceptors form a goniotopic map of joint angle The sense of self relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Mamiya and colleagues investigate how proprioceptors detect specific mechanical features, such as joint position and movement. They show how feature selectivity arises from the biomechanics of the proprioceptive organ and discover topographic neural maps of leg joint angle and vibration frequency.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37562405</pmid><doi>10.1016/j.neuron.2023.07.009</doi><orcidid>https://orcid.org/0000-0002-5689-5806</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2023-10, Vol.111 (20), p.3230-3243.e14
issn 0896-6273
1097-4199
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10644877
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
biomechanics
Drosophila
Drosophila - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Ion Channels - metabolism
locomotion
mechanosensation
proprioception
Proprioception - physiology
Sensory Receptor Cells - physiology
somatosensation
topographic
title Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20origins%20of%20proprioceptor%20feature%20selectivity%20and%20topographic%20maps%20in%20the%20Drosophila%20leg&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Mamiya,%20Akira&rft.date=2023-10-18&rft.volume=111&rft.issue=20&rft.spage=3230&rft.epage=3243.e14&rft.pages=3230-3243.e14&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2023.07.009&rft_dat=%3Cproquest_pubme%3E2850313536%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850313536&rft_id=info:pmid/37562405&rft_els_id=S0896627323005421&rfr_iscdi=true