Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis

Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18-interactions were dependent on the binary RAB3GAP1-RAB3GAP2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2023-11, Vol.299 (11), p.105295, Article 105295
Hauptverfasser: Kiss, Robert S., Chicoine, Jarred, Khalil, Youssef, Sladek, Robert, Chen, He, Pisaturo, Alessandro, Martin, Cyril, Dale, Jessica D., Brudenell, Tegan A., Kamath, Archith, Kyei-Boahen, Jeffrey, Hafiane, Anouar, Daliah, Girija, Alecki, Célia, Hopes, Tayah S., Heier, Martin, Aligianis, Irene A., Lebrun, Jean-Jacques, Aspden, Julie, Paci, Emanuele, Kerksiek, Anja, Lütjohann, Dieter, Clayton, Peter, Wills, Jimi C., von Kriegsheim, Alex, Nilsson, Tommy, Sheridan, Eamonn, Handley, Mark T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 105295
container_title The Journal of biological chemistry
container_volume 299
creator Kiss, Robert S.
Chicoine, Jarred
Khalil, Youssef
Sladek, Robert
Chen, He
Pisaturo, Alessandro
Martin, Cyril
Dale, Jessica D.
Brudenell, Tegan A.
Kamath, Archith
Kyei-Boahen, Jeffrey
Hafiane, Anouar
Daliah, Girija
Alecki, Célia
Hopes, Tayah S.
Heier, Martin
Aligianis, Irene A.
Lebrun, Jean-Jacques
Aspden, Julie
Paci, Emanuele
Kerksiek, Anja
Lütjohann, Dieter
Clayton, Peter
Wills, Jimi C.
von Kriegsheim, Alex
Nilsson, Tommy
Sheridan, Eamonn
Handley, Mark T.
description Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18-interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor (GEF) complex. 12 of these 28 interactions are supported by prior reports and we have directly validated novel interactions with SEC22A, TMCO4 and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites (MCSs), interactors included groups of microtubule/membrane-remodelling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We find that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Further, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated, or in which ORP2 expression is disrupted. Our data demonstrate that GEF-dependent Rab-interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.
doi_str_mv 10.1016/j.jbc.2023.105295
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10641524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925823023232</els_id><sourcerecordid>2870991068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-3df75e432eefcb7e4ce01766f7041389978a2407f9e856b3dff40109d6c1088e3</originalsourceid><addsrcrecordid>eNp9kUGPFCEQhYnRuLOrP8CL4eilR6DppokHs05012QTjVkTb4Smq92a0M0IzMTx18uk141e5EKgvveK4hHygrM1Z7x9vV1ve7cWTNTl3AjdPCIrzrq6qhv-7TFZMSZ4pUXTnZHzlLasLKn5U3JWK6WkVu2KTJsw7Wy0GQ9AdzH8xAnzkfYYMs5HX-7DTHHaeXQ2Q6L5DmiarPf06vazTUC_XL7jHcWZpgwxeDqFHj3-WoR2Hk5W6TgXXcL0jDwZrU_w_H6_IF8_vL_dXFc3n64-bi5vKicbkat6GFUDshYAo-sVSAeMq7YdFZO87rRWnRWSqVFD17R9wUfJONND68r4HdQX5O3iu9v3EwwO5hytN7uIk41HEyyafysz3pnv4WA4ayVvhCwOr-4dYvixh5TNhMmB93aGsE9GdIppXfCuoHxBXQwpRRgf-nBmTjmZrSk5mVNOZsmpaF7-_cAHxZ9gCvBmAaB80wEhmuQQZgcDRnDZDAH_Y_8be9ylwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870991068</pqid></control><display><type>article</type><title>Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kiss, Robert S. ; Chicoine, Jarred ; Khalil, Youssef ; Sladek, Robert ; Chen, He ; Pisaturo, Alessandro ; Martin, Cyril ; Dale, Jessica D. ; Brudenell, Tegan A. ; Kamath, Archith ; Kyei-Boahen, Jeffrey ; Hafiane, Anouar ; Daliah, Girija ; Alecki, Célia ; Hopes, Tayah S. ; Heier, Martin ; Aligianis, Irene A. ; Lebrun, Jean-Jacques ; Aspden, Julie ; Paci, Emanuele ; Kerksiek, Anja ; Lütjohann, Dieter ; Clayton, Peter ; Wills, Jimi C. ; von Kriegsheim, Alex ; Nilsson, Tommy ; Sheridan, Eamonn ; Handley, Mark T.</creator><creatorcontrib>Kiss, Robert S. ; Chicoine, Jarred ; Khalil, Youssef ; Sladek, Robert ; Chen, He ; Pisaturo, Alessandro ; Martin, Cyril ; Dale, Jessica D. ; Brudenell, Tegan A. ; Kamath, Archith ; Kyei-Boahen, Jeffrey ; Hafiane, Anouar ; Daliah, Girija ; Alecki, Célia ; Hopes, Tayah S. ; Heier, Martin ; Aligianis, Irene A. ; Lebrun, Jean-Jacques ; Aspden, Julie ; Paci, Emanuele ; Kerksiek, Anja ; Lütjohann, Dieter ; Clayton, Peter ; Wills, Jimi C. ; von Kriegsheim, Alex ; Nilsson, Tommy ; Sheridan, Eamonn ; Handley, Mark T.</creatorcontrib><description>Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18-interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor (GEF) complex. 12 of these 28 interactions are supported by prior reports and we have directly validated novel interactions with SEC22A, TMCO4 and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites (MCSs), interactors included groups of microtubule/membrane-remodelling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We find that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Further, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated, or in which ORP2 expression is disrupted. Our data demonstrate that GEF-dependent Rab-interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2023.105295</identifier><identifier>PMID: 37774976</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>BioID ; Biotinylation ; Calcium Channels - genetics ; Calcium Channels - metabolism ; Cells, Cultured ; Cholesterol - biosynthesis ; Cholesterol - metabolism ; Collection: Molecular Bases of Disease ; EBP ; Gene Knockdown Techniques ; Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - metabolism ; HeLa Cells ; Humans ; lathosterol ; lipid transport ; ORP2 ; Protein Transport - genetics ; protein-protein interaction ; Rab ; rab GTP-Binding Proteins - genetics ; rab GTP-Binding Proteins - metabolism ; RAB18 ; rab3 GTP-Binding Proteins - metabolism ; SNARE proteins ; Sterols - biosynthesis ; Sterols - metabolism</subject><ispartof>The Journal of biological chemistry, 2023-11, Vol.299 (11), p.105295, Article 105295</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-3df75e432eefcb7e4ce01766f7041389978a2407f9e856b3dff40109d6c1088e3</citedby><cites>FETCH-LOGICAL-c452t-3df75e432eefcb7e4ce01766f7041389978a2407f9e856b3dff40109d6c1088e3</cites><orcidid>0000-0002-7616-8438 ; 0000-0002-4891-2768 ; 0000-0003-1669-007X ; 0000-0001-7592-4302 ; 0000-0002-8537-6204 ; 0000-0002-4662-8499 ; 0000-0003-3128-6438 ; 0000-0001-7807-194X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641524/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641524/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37774976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiss, Robert S.</creatorcontrib><creatorcontrib>Chicoine, Jarred</creatorcontrib><creatorcontrib>Khalil, Youssef</creatorcontrib><creatorcontrib>Sladek, Robert</creatorcontrib><creatorcontrib>Chen, He</creatorcontrib><creatorcontrib>Pisaturo, Alessandro</creatorcontrib><creatorcontrib>Martin, Cyril</creatorcontrib><creatorcontrib>Dale, Jessica D.</creatorcontrib><creatorcontrib>Brudenell, Tegan A.</creatorcontrib><creatorcontrib>Kamath, Archith</creatorcontrib><creatorcontrib>Kyei-Boahen, Jeffrey</creatorcontrib><creatorcontrib>Hafiane, Anouar</creatorcontrib><creatorcontrib>Daliah, Girija</creatorcontrib><creatorcontrib>Alecki, Célia</creatorcontrib><creatorcontrib>Hopes, Tayah S.</creatorcontrib><creatorcontrib>Heier, Martin</creatorcontrib><creatorcontrib>Aligianis, Irene A.</creatorcontrib><creatorcontrib>Lebrun, Jean-Jacques</creatorcontrib><creatorcontrib>Aspden, Julie</creatorcontrib><creatorcontrib>Paci, Emanuele</creatorcontrib><creatorcontrib>Kerksiek, Anja</creatorcontrib><creatorcontrib>Lütjohann, Dieter</creatorcontrib><creatorcontrib>Clayton, Peter</creatorcontrib><creatorcontrib>Wills, Jimi C.</creatorcontrib><creatorcontrib>von Kriegsheim, Alex</creatorcontrib><creatorcontrib>Nilsson, Tommy</creatorcontrib><creatorcontrib>Sheridan, Eamonn</creatorcontrib><creatorcontrib>Handley, Mark T.</creatorcontrib><title>Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18-interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor (GEF) complex. 12 of these 28 interactions are supported by prior reports and we have directly validated novel interactions with SEC22A, TMCO4 and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites (MCSs), interactors included groups of microtubule/membrane-remodelling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We find that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Further, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated, or in which ORP2 expression is disrupted. Our data demonstrate that GEF-dependent Rab-interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.</description><subject>BioID</subject><subject>Biotinylation</subject><subject>Calcium Channels - genetics</subject><subject>Calcium Channels - metabolism</subject><subject>Cells, Cultured</subject><subject>Cholesterol - biosynthesis</subject><subject>Cholesterol - metabolism</subject><subject>Collection: Molecular Bases of Disease</subject><subject>EBP</subject><subject>Gene Knockdown Techniques</subject><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>lathosterol</subject><subject>lipid transport</subject><subject>ORP2</subject><subject>Protein Transport - genetics</subject><subject>protein-protein interaction</subject><subject>Rab</subject><subject>rab GTP-Binding Proteins - genetics</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>RAB18</subject><subject>rab3 GTP-Binding Proteins - metabolism</subject><subject>SNARE proteins</subject><subject>Sterols - biosynthesis</subject><subject>Sterols - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUGPFCEQhYnRuLOrP8CL4eilR6DppokHs05012QTjVkTb4Smq92a0M0IzMTx18uk141e5EKgvveK4hHygrM1Z7x9vV1ve7cWTNTl3AjdPCIrzrq6qhv-7TFZMSZ4pUXTnZHzlLasLKn5U3JWK6WkVu2KTJsw7Wy0GQ9AdzH8xAnzkfYYMs5HX-7DTHHaeXQ2Q6L5DmiarPf06vazTUC_XL7jHcWZpgwxeDqFHj3-WoR2Hk5W6TgXXcL0jDwZrU_w_H6_IF8_vL_dXFc3n64-bi5vKicbkat6GFUDshYAo-sVSAeMq7YdFZO87rRWnRWSqVFD17R9wUfJONND68r4HdQX5O3iu9v3EwwO5hytN7uIk41HEyyafysz3pnv4WA4ayVvhCwOr-4dYvixh5TNhMmB93aGsE9GdIppXfCuoHxBXQwpRRgf-nBmTjmZrSk5mVNOZsmpaF7-_cAHxZ9gCvBmAaB80wEhmuQQZgcDRnDZDAH_Y_8be9ylwQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Kiss, Robert S.</creator><creator>Chicoine, Jarred</creator><creator>Khalil, Youssef</creator><creator>Sladek, Robert</creator><creator>Chen, He</creator><creator>Pisaturo, Alessandro</creator><creator>Martin, Cyril</creator><creator>Dale, Jessica D.</creator><creator>Brudenell, Tegan A.</creator><creator>Kamath, Archith</creator><creator>Kyei-Boahen, Jeffrey</creator><creator>Hafiane, Anouar</creator><creator>Daliah, Girija</creator><creator>Alecki, Célia</creator><creator>Hopes, Tayah S.</creator><creator>Heier, Martin</creator><creator>Aligianis, Irene A.</creator><creator>Lebrun, Jean-Jacques</creator><creator>Aspden, Julie</creator><creator>Paci, Emanuele</creator><creator>Kerksiek, Anja</creator><creator>Lütjohann, Dieter</creator><creator>Clayton, Peter</creator><creator>Wills, Jimi C.</creator><creator>von Kriegsheim, Alex</creator><creator>Nilsson, Tommy</creator><creator>Sheridan, Eamonn</creator><creator>Handley, Mark T.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7616-8438</orcidid><orcidid>https://orcid.org/0000-0002-4891-2768</orcidid><orcidid>https://orcid.org/0000-0003-1669-007X</orcidid><orcidid>https://orcid.org/0000-0001-7592-4302</orcidid><orcidid>https://orcid.org/0000-0002-8537-6204</orcidid><orcidid>https://orcid.org/0000-0002-4662-8499</orcidid><orcidid>https://orcid.org/0000-0003-3128-6438</orcidid><orcidid>https://orcid.org/0000-0001-7807-194X</orcidid></search><sort><creationdate>20231101</creationdate><title>Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis</title><author>Kiss, Robert S. ; Chicoine, Jarred ; Khalil, Youssef ; Sladek, Robert ; Chen, He ; Pisaturo, Alessandro ; Martin, Cyril ; Dale, Jessica D. ; Brudenell, Tegan A. ; Kamath, Archith ; Kyei-Boahen, Jeffrey ; Hafiane, Anouar ; Daliah, Girija ; Alecki, Célia ; Hopes, Tayah S. ; Heier, Martin ; Aligianis, Irene A. ; Lebrun, Jean-Jacques ; Aspden, Julie ; Paci, Emanuele ; Kerksiek, Anja ; Lütjohann, Dieter ; Clayton, Peter ; Wills, Jimi C. ; von Kriegsheim, Alex ; Nilsson, Tommy ; Sheridan, Eamonn ; Handley, Mark T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-3df75e432eefcb7e4ce01766f7041389978a2407f9e856b3dff40109d6c1088e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BioID</topic><topic>Biotinylation</topic><topic>Calcium Channels - genetics</topic><topic>Calcium Channels - metabolism</topic><topic>Cells, Cultured</topic><topic>Cholesterol - biosynthesis</topic><topic>Cholesterol - metabolism</topic><topic>Collection: Molecular Bases of Disease</topic><topic>EBP</topic><topic>Gene Knockdown Techniques</topic><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>lathosterol</topic><topic>lipid transport</topic><topic>ORP2</topic><topic>Protein Transport - genetics</topic><topic>protein-protein interaction</topic><topic>Rab</topic><topic>rab GTP-Binding Proteins - genetics</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>RAB18</topic><topic>rab3 GTP-Binding Proteins - metabolism</topic><topic>SNARE proteins</topic><topic>Sterols - biosynthesis</topic><topic>Sterols - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiss, Robert S.</creatorcontrib><creatorcontrib>Chicoine, Jarred</creatorcontrib><creatorcontrib>Khalil, Youssef</creatorcontrib><creatorcontrib>Sladek, Robert</creatorcontrib><creatorcontrib>Chen, He</creatorcontrib><creatorcontrib>Pisaturo, Alessandro</creatorcontrib><creatorcontrib>Martin, Cyril</creatorcontrib><creatorcontrib>Dale, Jessica D.</creatorcontrib><creatorcontrib>Brudenell, Tegan A.</creatorcontrib><creatorcontrib>Kamath, Archith</creatorcontrib><creatorcontrib>Kyei-Boahen, Jeffrey</creatorcontrib><creatorcontrib>Hafiane, Anouar</creatorcontrib><creatorcontrib>Daliah, Girija</creatorcontrib><creatorcontrib>Alecki, Célia</creatorcontrib><creatorcontrib>Hopes, Tayah S.</creatorcontrib><creatorcontrib>Heier, Martin</creatorcontrib><creatorcontrib>Aligianis, Irene A.</creatorcontrib><creatorcontrib>Lebrun, Jean-Jacques</creatorcontrib><creatorcontrib>Aspden, Julie</creatorcontrib><creatorcontrib>Paci, Emanuele</creatorcontrib><creatorcontrib>Kerksiek, Anja</creatorcontrib><creatorcontrib>Lütjohann, Dieter</creatorcontrib><creatorcontrib>Clayton, Peter</creatorcontrib><creatorcontrib>Wills, Jimi C.</creatorcontrib><creatorcontrib>von Kriegsheim, Alex</creatorcontrib><creatorcontrib>Nilsson, Tommy</creatorcontrib><creatorcontrib>Sheridan, Eamonn</creatorcontrib><creatorcontrib>Handley, Mark T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiss, Robert S.</au><au>Chicoine, Jarred</au><au>Khalil, Youssef</au><au>Sladek, Robert</au><au>Chen, He</au><au>Pisaturo, Alessandro</au><au>Martin, Cyril</au><au>Dale, Jessica D.</au><au>Brudenell, Tegan A.</au><au>Kamath, Archith</au><au>Kyei-Boahen, Jeffrey</au><au>Hafiane, Anouar</au><au>Daliah, Girija</au><au>Alecki, Célia</au><au>Hopes, Tayah S.</au><au>Heier, Martin</au><au>Aligianis, Irene A.</au><au>Lebrun, Jean-Jacques</au><au>Aspden, Julie</au><au>Paci, Emanuele</au><au>Kerksiek, Anja</au><au>Lütjohann, Dieter</au><au>Clayton, Peter</au><au>Wills, Jimi C.</au><au>von Kriegsheim, Alex</au><au>Nilsson, Tommy</au><au>Sheridan, Eamonn</au><au>Handley, Mark T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>299</volume><issue>11</issue><spage>105295</spage><pages>105295-</pages><artnum>105295</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18-interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor (GEF) complex. 12 of these 28 interactions are supported by prior reports and we have directly validated novel interactions with SEC22A, TMCO4 and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites (MCSs), interactors included groups of microtubule/membrane-remodelling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We find that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Further, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated, or in which ORP2 expression is disrupted. Our data demonstrate that GEF-dependent Rab-interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37774976</pmid><doi>10.1016/j.jbc.2023.105295</doi><orcidid>https://orcid.org/0000-0002-7616-8438</orcidid><orcidid>https://orcid.org/0000-0002-4891-2768</orcidid><orcidid>https://orcid.org/0000-0003-1669-007X</orcidid><orcidid>https://orcid.org/0000-0001-7592-4302</orcidid><orcidid>https://orcid.org/0000-0002-8537-6204</orcidid><orcidid>https://orcid.org/0000-0002-4662-8499</orcidid><orcidid>https://orcid.org/0000-0003-3128-6438</orcidid><orcidid>https://orcid.org/0000-0001-7807-194X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2023-11, Vol.299 (11), p.105295, Article 105295
issn 0021-9258
1083-351X
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10641524
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects BioID
Biotinylation
Calcium Channels - genetics
Calcium Channels - metabolism
Cells, Cultured
Cholesterol - biosynthesis
Cholesterol - metabolism
Collection: Molecular Bases of Disease
EBP
Gene Knockdown Techniques
Guanine Nucleotide Exchange Factors - genetics
Guanine Nucleotide Exchange Factors - metabolism
HeLa Cells
Humans
lathosterol
lipid transport
ORP2
Protein Transport - genetics
protein-protein interaction
Rab
rab GTP-Binding Proteins - genetics
rab GTP-Binding Proteins - metabolism
RAB18
rab3 GTP-Binding Proteins - metabolism
SNARE proteins
Sterols - biosynthesis
Sterols - metabolism
title Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20proximity%20biotinylation%20implicates%20the%20small%20GTPase%20RAB18%20in%20sterol%20mobilization%20and%20biosynthesis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kiss,%20Robert%20S.&rft.date=2023-11-01&rft.volume=299&rft.issue=11&rft.spage=105295&rft.pages=105295-&rft.artnum=105295&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2023.105295&rft_dat=%3Cproquest_pubme%3E2870991068%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870991068&rft_id=info:pmid/37774976&rft_els_id=S0021925823023232&rfr_iscdi=true