Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis
Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18-interactions were dependent on the binary RAB3GAP1-RAB3GAP2...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2023-11, Vol.299 (11), p.105295, Article 105295 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 105295 |
container_title | The Journal of biological chemistry |
container_volume | 299 |
creator | Kiss, Robert S. Chicoine, Jarred Khalil, Youssef Sladek, Robert Chen, He Pisaturo, Alessandro Martin, Cyril Dale, Jessica D. Brudenell, Tegan A. Kamath, Archith Kyei-Boahen, Jeffrey Hafiane, Anouar Daliah, Girija Alecki, Célia Hopes, Tayah S. Heier, Martin Aligianis, Irene A. Lebrun, Jean-Jacques Aspden, Julie Paci, Emanuele Kerksiek, Anja Lütjohann, Dieter Clayton, Peter Wills, Jimi C. von Kriegsheim, Alex Nilsson, Tommy Sheridan, Eamonn Handley, Mark T. |
description | Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18-interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor (GEF) complex. 12 of these 28 interactions are supported by prior reports and we have directly validated novel interactions with SEC22A, TMCO4 and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites (MCSs), interactors included groups of microtubule/membrane-remodelling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We find that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Further, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated, or in which ORP2 expression is disrupted. Our data demonstrate that GEF-dependent Rab-interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder. |
doi_str_mv | 10.1016/j.jbc.2023.105295 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10641524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925823023232</els_id><sourcerecordid>2870991068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-3df75e432eefcb7e4ce01766f7041389978a2407f9e856b3dff40109d6c1088e3</originalsourceid><addsrcrecordid>eNp9kUGPFCEQhYnRuLOrP8CL4eilR6DppokHs05012QTjVkTb4Smq92a0M0IzMTx18uk141e5EKgvveK4hHygrM1Z7x9vV1ve7cWTNTl3AjdPCIrzrq6qhv-7TFZMSZ4pUXTnZHzlLasLKn5U3JWK6WkVu2KTJsw7Wy0GQ9AdzH8xAnzkfYYMs5HX-7DTHHaeXQ2Q6L5DmiarPf06vazTUC_XL7jHcWZpgwxeDqFHj3-WoR2Hk5W6TgXXcL0jDwZrU_w_H6_IF8_vL_dXFc3n64-bi5vKicbkat6GFUDshYAo-sVSAeMq7YdFZO87rRWnRWSqVFD17R9wUfJONND68r4HdQX5O3iu9v3EwwO5hytN7uIk41HEyyafysz3pnv4WA4ayVvhCwOr-4dYvixh5TNhMmB93aGsE9GdIppXfCuoHxBXQwpRRgf-nBmTjmZrSk5mVNOZsmpaF7-_cAHxZ9gCvBmAaB80wEhmuQQZgcDRnDZDAH_Y_8be9ylwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870991068</pqid></control><display><type>article</type><title>Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kiss, Robert S. ; Chicoine, Jarred ; Khalil, Youssef ; Sladek, Robert ; Chen, He ; Pisaturo, Alessandro ; Martin, Cyril ; Dale, Jessica D. ; Brudenell, Tegan A. ; Kamath, Archith ; Kyei-Boahen, Jeffrey ; Hafiane, Anouar ; Daliah, Girija ; Alecki, Célia ; Hopes, Tayah S. ; Heier, Martin ; Aligianis, Irene A. ; Lebrun, Jean-Jacques ; Aspden, Julie ; Paci, Emanuele ; Kerksiek, Anja ; Lütjohann, Dieter ; Clayton, Peter ; Wills, Jimi C. ; von Kriegsheim, Alex ; Nilsson, Tommy ; Sheridan, Eamonn ; Handley, Mark T.</creator><creatorcontrib>Kiss, Robert S. ; Chicoine, Jarred ; Khalil, Youssef ; Sladek, Robert ; Chen, He ; Pisaturo, Alessandro ; Martin, Cyril ; Dale, Jessica D. ; Brudenell, Tegan A. ; Kamath, Archith ; Kyei-Boahen, Jeffrey ; Hafiane, Anouar ; Daliah, Girija ; Alecki, Célia ; Hopes, Tayah S. ; Heier, Martin ; Aligianis, Irene A. ; Lebrun, Jean-Jacques ; Aspden, Julie ; Paci, Emanuele ; Kerksiek, Anja ; Lütjohann, Dieter ; Clayton, Peter ; Wills, Jimi C. ; von Kriegsheim, Alex ; Nilsson, Tommy ; Sheridan, Eamonn ; Handley, Mark T.</creatorcontrib><description>Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18-interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor (GEF) complex. 12 of these 28 interactions are supported by prior reports and we have directly validated novel interactions with SEC22A, TMCO4 and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites (MCSs), interactors included groups of microtubule/membrane-remodelling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We find that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Further, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated, or in which ORP2 expression is disrupted. Our data demonstrate that GEF-dependent Rab-interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2023.105295</identifier><identifier>PMID: 37774976</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>BioID ; Biotinylation ; Calcium Channels - genetics ; Calcium Channels - metabolism ; Cells, Cultured ; Cholesterol - biosynthesis ; Cholesterol - metabolism ; Collection: Molecular Bases of Disease ; EBP ; Gene Knockdown Techniques ; Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - metabolism ; HeLa Cells ; Humans ; lathosterol ; lipid transport ; ORP2 ; Protein Transport - genetics ; protein-protein interaction ; Rab ; rab GTP-Binding Proteins - genetics ; rab GTP-Binding Proteins - metabolism ; RAB18 ; rab3 GTP-Binding Proteins - metabolism ; SNARE proteins ; Sterols - biosynthesis ; Sterols - metabolism</subject><ispartof>The Journal of biological chemistry, 2023-11, Vol.299 (11), p.105295, Article 105295</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-3df75e432eefcb7e4ce01766f7041389978a2407f9e856b3dff40109d6c1088e3</citedby><cites>FETCH-LOGICAL-c452t-3df75e432eefcb7e4ce01766f7041389978a2407f9e856b3dff40109d6c1088e3</cites><orcidid>0000-0002-7616-8438 ; 0000-0002-4891-2768 ; 0000-0003-1669-007X ; 0000-0001-7592-4302 ; 0000-0002-8537-6204 ; 0000-0002-4662-8499 ; 0000-0003-3128-6438 ; 0000-0001-7807-194X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641524/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641524/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37774976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiss, Robert S.</creatorcontrib><creatorcontrib>Chicoine, Jarred</creatorcontrib><creatorcontrib>Khalil, Youssef</creatorcontrib><creatorcontrib>Sladek, Robert</creatorcontrib><creatorcontrib>Chen, He</creatorcontrib><creatorcontrib>Pisaturo, Alessandro</creatorcontrib><creatorcontrib>Martin, Cyril</creatorcontrib><creatorcontrib>Dale, Jessica D.</creatorcontrib><creatorcontrib>Brudenell, Tegan A.</creatorcontrib><creatorcontrib>Kamath, Archith</creatorcontrib><creatorcontrib>Kyei-Boahen, Jeffrey</creatorcontrib><creatorcontrib>Hafiane, Anouar</creatorcontrib><creatorcontrib>Daliah, Girija</creatorcontrib><creatorcontrib>Alecki, Célia</creatorcontrib><creatorcontrib>Hopes, Tayah S.</creatorcontrib><creatorcontrib>Heier, Martin</creatorcontrib><creatorcontrib>Aligianis, Irene A.</creatorcontrib><creatorcontrib>Lebrun, Jean-Jacques</creatorcontrib><creatorcontrib>Aspden, Julie</creatorcontrib><creatorcontrib>Paci, Emanuele</creatorcontrib><creatorcontrib>Kerksiek, Anja</creatorcontrib><creatorcontrib>Lütjohann, Dieter</creatorcontrib><creatorcontrib>Clayton, Peter</creatorcontrib><creatorcontrib>Wills, Jimi C.</creatorcontrib><creatorcontrib>von Kriegsheim, Alex</creatorcontrib><creatorcontrib>Nilsson, Tommy</creatorcontrib><creatorcontrib>Sheridan, Eamonn</creatorcontrib><creatorcontrib>Handley, Mark T.</creatorcontrib><title>Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18-interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor (GEF) complex. 12 of these 28 interactions are supported by prior reports and we have directly validated novel interactions with SEC22A, TMCO4 and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites (MCSs), interactors included groups of microtubule/membrane-remodelling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We find that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Further, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated, or in which ORP2 expression is disrupted. Our data demonstrate that GEF-dependent Rab-interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.</description><subject>BioID</subject><subject>Biotinylation</subject><subject>Calcium Channels - genetics</subject><subject>Calcium Channels - metabolism</subject><subject>Cells, Cultured</subject><subject>Cholesterol - biosynthesis</subject><subject>Cholesterol - metabolism</subject><subject>Collection: Molecular Bases of Disease</subject><subject>EBP</subject><subject>Gene Knockdown Techniques</subject><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>lathosterol</subject><subject>lipid transport</subject><subject>ORP2</subject><subject>Protein Transport - genetics</subject><subject>protein-protein interaction</subject><subject>Rab</subject><subject>rab GTP-Binding Proteins - genetics</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>RAB18</subject><subject>rab3 GTP-Binding Proteins - metabolism</subject><subject>SNARE proteins</subject><subject>Sterols - biosynthesis</subject><subject>Sterols - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUGPFCEQhYnRuLOrP8CL4eilR6DppokHs05012QTjVkTb4Smq92a0M0IzMTx18uk141e5EKgvveK4hHygrM1Z7x9vV1ve7cWTNTl3AjdPCIrzrq6qhv-7TFZMSZ4pUXTnZHzlLasLKn5U3JWK6WkVu2KTJsw7Wy0GQ9AdzH8xAnzkfYYMs5HX-7DTHHaeXQ2Q6L5DmiarPf06vazTUC_XL7jHcWZpgwxeDqFHj3-WoR2Hk5W6TgXXcL0jDwZrU_w_H6_IF8_vL_dXFc3n64-bi5vKicbkat6GFUDshYAo-sVSAeMq7YdFZO87rRWnRWSqVFD17R9wUfJONND68r4HdQX5O3iu9v3EwwO5hytN7uIk41HEyyafysz3pnv4WA4ayVvhCwOr-4dYvixh5TNhMmB93aGsE9GdIppXfCuoHxBXQwpRRgf-nBmTjmZrSk5mVNOZsmpaF7-_cAHxZ9gCvBmAaB80wEhmuQQZgcDRnDZDAH_Y_8be9ylwQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Kiss, Robert S.</creator><creator>Chicoine, Jarred</creator><creator>Khalil, Youssef</creator><creator>Sladek, Robert</creator><creator>Chen, He</creator><creator>Pisaturo, Alessandro</creator><creator>Martin, Cyril</creator><creator>Dale, Jessica D.</creator><creator>Brudenell, Tegan A.</creator><creator>Kamath, Archith</creator><creator>Kyei-Boahen, Jeffrey</creator><creator>Hafiane, Anouar</creator><creator>Daliah, Girija</creator><creator>Alecki, Célia</creator><creator>Hopes, Tayah S.</creator><creator>Heier, Martin</creator><creator>Aligianis, Irene A.</creator><creator>Lebrun, Jean-Jacques</creator><creator>Aspden, Julie</creator><creator>Paci, Emanuele</creator><creator>Kerksiek, Anja</creator><creator>Lütjohann, Dieter</creator><creator>Clayton, Peter</creator><creator>Wills, Jimi C.</creator><creator>von Kriegsheim, Alex</creator><creator>Nilsson, Tommy</creator><creator>Sheridan, Eamonn</creator><creator>Handley, Mark T.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7616-8438</orcidid><orcidid>https://orcid.org/0000-0002-4891-2768</orcidid><orcidid>https://orcid.org/0000-0003-1669-007X</orcidid><orcidid>https://orcid.org/0000-0001-7592-4302</orcidid><orcidid>https://orcid.org/0000-0002-8537-6204</orcidid><orcidid>https://orcid.org/0000-0002-4662-8499</orcidid><orcidid>https://orcid.org/0000-0003-3128-6438</orcidid><orcidid>https://orcid.org/0000-0001-7807-194X</orcidid></search><sort><creationdate>20231101</creationdate><title>Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis</title><author>Kiss, Robert S. ; Chicoine, Jarred ; Khalil, Youssef ; Sladek, Robert ; Chen, He ; Pisaturo, Alessandro ; Martin, Cyril ; Dale, Jessica D. ; Brudenell, Tegan A. ; Kamath, Archith ; Kyei-Boahen, Jeffrey ; Hafiane, Anouar ; Daliah, Girija ; Alecki, Célia ; Hopes, Tayah S. ; Heier, Martin ; Aligianis, Irene A. ; Lebrun, Jean-Jacques ; Aspden, Julie ; Paci, Emanuele ; Kerksiek, Anja ; Lütjohann, Dieter ; Clayton, Peter ; Wills, Jimi C. ; von Kriegsheim, Alex ; Nilsson, Tommy ; Sheridan, Eamonn ; Handley, Mark T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-3df75e432eefcb7e4ce01766f7041389978a2407f9e856b3dff40109d6c1088e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BioID</topic><topic>Biotinylation</topic><topic>Calcium Channels - genetics</topic><topic>Calcium Channels - metabolism</topic><topic>Cells, Cultured</topic><topic>Cholesterol - biosynthesis</topic><topic>Cholesterol - metabolism</topic><topic>Collection: Molecular Bases of Disease</topic><topic>EBP</topic><topic>Gene Knockdown Techniques</topic><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>lathosterol</topic><topic>lipid transport</topic><topic>ORP2</topic><topic>Protein Transport - genetics</topic><topic>protein-protein interaction</topic><topic>Rab</topic><topic>rab GTP-Binding Proteins - genetics</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>RAB18</topic><topic>rab3 GTP-Binding Proteins - metabolism</topic><topic>SNARE proteins</topic><topic>Sterols - biosynthesis</topic><topic>Sterols - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiss, Robert S.</creatorcontrib><creatorcontrib>Chicoine, Jarred</creatorcontrib><creatorcontrib>Khalil, Youssef</creatorcontrib><creatorcontrib>Sladek, Robert</creatorcontrib><creatorcontrib>Chen, He</creatorcontrib><creatorcontrib>Pisaturo, Alessandro</creatorcontrib><creatorcontrib>Martin, Cyril</creatorcontrib><creatorcontrib>Dale, Jessica D.</creatorcontrib><creatorcontrib>Brudenell, Tegan A.</creatorcontrib><creatorcontrib>Kamath, Archith</creatorcontrib><creatorcontrib>Kyei-Boahen, Jeffrey</creatorcontrib><creatorcontrib>Hafiane, Anouar</creatorcontrib><creatorcontrib>Daliah, Girija</creatorcontrib><creatorcontrib>Alecki, Célia</creatorcontrib><creatorcontrib>Hopes, Tayah S.</creatorcontrib><creatorcontrib>Heier, Martin</creatorcontrib><creatorcontrib>Aligianis, Irene A.</creatorcontrib><creatorcontrib>Lebrun, Jean-Jacques</creatorcontrib><creatorcontrib>Aspden, Julie</creatorcontrib><creatorcontrib>Paci, Emanuele</creatorcontrib><creatorcontrib>Kerksiek, Anja</creatorcontrib><creatorcontrib>Lütjohann, Dieter</creatorcontrib><creatorcontrib>Clayton, Peter</creatorcontrib><creatorcontrib>Wills, Jimi C.</creatorcontrib><creatorcontrib>von Kriegsheim, Alex</creatorcontrib><creatorcontrib>Nilsson, Tommy</creatorcontrib><creatorcontrib>Sheridan, Eamonn</creatorcontrib><creatorcontrib>Handley, Mark T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiss, Robert S.</au><au>Chicoine, Jarred</au><au>Khalil, Youssef</au><au>Sladek, Robert</au><au>Chen, He</au><au>Pisaturo, Alessandro</au><au>Martin, Cyril</au><au>Dale, Jessica D.</au><au>Brudenell, Tegan A.</au><au>Kamath, Archith</au><au>Kyei-Boahen, Jeffrey</au><au>Hafiane, Anouar</au><au>Daliah, Girija</au><au>Alecki, Célia</au><au>Hopes, Tayah S.</au><au>Heier, Martin</au><au>Aligianis, Irene A.</au><au>Lebrun, Jean-Jacques</au><au>Aspden, Julie</au><au>Paci, Emanuele</au><au>Kerksiek, Anja</au><au>Lütjohann, Dieter</au><au>Clayton, Peter</au><au>Wills, Jimi C.</au><au>von Kriegsheim, Alex</au><au>Nilsson, Tommy</au><au>Sheridan, Eamonn</au><au>Handley, Mark T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>299</volume><issue>11</issue><spage>105295</spage><pages>105295-</pages><artnum>105295</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18-interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor (GEF) complex. 12 of these 28 interactions are supported by prior reports and we have directly validated novel interactions with SEC22A, TMCO4 and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites (MCSs), interactors included groups of microtubule/membrane-remodelling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We find that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Further, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated, or in which ORP2 expression is disrupted. Our data demonstrate that GEF-dependent Rab-interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37774976</pmid><doi>10.1016/j.jbc.2023.105295</doi><orcidid>https://orcid.org/0000-0002-7616-8438</orcidid><orcidid>https://orcid.org/0000-0002-4891-2768</orcidid><orcidid>https://orcid.org/0000-0003-1669-007X</orcidid><orcidid>https://orcid.org/0000-0001-7592-4302</orcidid><orcidid>https://orcid.org/0000-0002-8537-6204</orcidid><orcidid>https://orcid.org/0000-0002-4662-8499</orcidid><orcidid>https://orcid.org/0000-0003-3128-6438</orcidid><orcidid>https://orcid.org/0000-0001-7807-194X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2023-11, Vol.299 (11), p.105295, Article 105295 |
issn | 0021-9258 1083-351X 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10641524 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | BioID Biotinylation Calcium Channels - genetics Calcium Channels - metabolism Cells, Cultured Cholesterol - biosynthesis Cholesterol - metabolism Collection: Molecular Bases of Disease EBP Gene Knockdown Techniques Guanine Nucleotide Exchange Factors - genetics Guanine Nucleotide Exchange Factors - metabolism HeLa Cells Humans lathosterol lipid transport ORP2 Protein Transport - genetics protein-protein interaction Rab rab GTP-Binding Proteins - genetics rab GTP-Binding Proteins - metabolism RAB18 rab3 GTP-Binding Proteins - metabolism SNARE proteins Sterols - biosynthesis Sterols - metabolism |
title | Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20proximity%20biotinylation%20implicates%20the%20small%20GTPase%20RAB18%20in%20sterol%20mobilization%20and%20biosynthesis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kiss,%20Robert%20S.&rft.date=2023-11-01&rft.volume=299&rft.issue=11&rft.spage=105295&rft.pages=105295-&rft.artnum=105295&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2023.105295&rft_dat=%3Cproquest_pubme%3E2870991068%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870991068&rft_id=info:pmid/37774976&rft_els_id=S0021925823023232&rfr_iscdi=true |