Listening to the Data: Computational Approaches to Addiction and Learning

Computational approaches hold great promise for identifying novel treatment targets and creating translational therapeutics for substance use disorders. From circuitries underlying decision-making to computationally derived neural markers of drug-cue reactivity, this review is a summary of the appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2023-11, Vol.43 (45), p.7547-7553
Hauptverfasser: Wilkinson, Courtney S, Luján, Miguel Á, Hales, Claire, Costa, Kauê M, Fiore, Vincenzo G, Knackstedt, Lori A, Kober, Hedy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7553
container_issue 45
container_start_page 7547
container_title The Journal of neuroscience
container_volume 43
creator Wilkinson, Courtney S
Luján, Miguel Á
Hales, Claire
Costa, Kauê M
Fiore, Vincenzo G
Knackstedt, Lori A
Kober, Hedy
description Computational approaches hold great promise for identifying novel treatment targets and creating translational therapeutics for substance use disorders. From circuitries underlying decision-making to computationally derived neural markers of drug-cue reactivity, this review is a summary of the approaches to data presented at our 2023 Society for Neuroscience Mini-Symposium. Here, we highlight data- and hypothesis-driven computational approaches that recently afforded advancements in addiction and learning neuroscience. First, we discuss the value of hypothesis-driven algorithmic modeling approaches, which integrate behavioral, neural, and cognitive outputs to refine hypothesis testing. Then, we review the advantages of data-driven dimensionality reduction and machine learning methods for uncovering novel predictor variables and elucidating relationships in high-dimensional data. Overall, this review highlights recent breakthroughs in cognitive mapping, model-based analysis of behavior/risky decision-making, patterns of drug taking, relapse, and neuromarker discovery, and showcases the benefits of novel modeling techniques, across both preclinical and clinical data.
doi_str_mv 10.1523/JNEUROSCI.1415-23.2023
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10634572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2888036040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-36900b287b2be709f8a38ec3fea0f140b02813a09bffcf40d7b11624c47d40343</originalsourceid><addsrcrecordid>eNpdkVFP2zAUhS3EBF3hL6BIvPCScu3rxDEvU1XY1qka0oBny3EcGpTGme0g8e9JBlTbnizd851j-x5CzigsaMbw8sfPm4dft3er9YJymqUMFwwYHpDZqMqUcaCHZAZMQJpzwY_J5xCeAEAAFUfkGIXkkEmYkfWmCdF2TfeYRJfErU2uddRXycrt-iHq2LhOt8my773TZmvDRC2rqjGTkuiuSjZW-8l_Qj7Vug329P2ck4evN_er7-nm9tt6tdykBiXEFHMJULJClKy0AmRdaCyswdpqqCmHElhBUYMs69rUHCpRUpozbrioOCDHOfnyltsP5c5WxnbR61b1vtlp_6KcbtS_Stds1aN7VhRy5JlgY8LFe4J3vwcboto1wdi21Z11Q1CsKArAHMbr5uT8P_TJDX5cyR9KokSk2Ujlb5TxLgRv6_1rKKipLrWvS011qXEy1TUaz_7-y9720Q--Ap3LkTk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889393315</pqid></control><display><type>article</type><title>Listening to the Data: Computational Approaches to Addiction and Learning</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wilkinson, Courtney S ; Luján, Miguel Á ; Hales, Claire ; Costa, Kauê M ; Fiore, Vincenzo G ; Knackstedt, Lori A ; Kober, Hedy</creator><creatorcontrib>Wilkinson, Courtney S ; Luján, Miguel Á ; Hales, Claire ; Costa, Kauê M ; Fiore, Vincenzo G ; Knackstedt, Lori A ; Kober, Hedy</creatorcontrib><description>Computational approaches hold great promise for identifying novel treatment targets and creating translational therapeutics for substance use disorders. From circuitries underlying decision-making to computationally derived neural markers of drug-cue reactivity, this review is a summary of the approaches to data presented at our 2023 Society for Neuroscience Mini-Symposium. Here, we highlight data- and hypothesis-driven computational approaches that recently afforded advancements in addiction and learning neuroscience. First, we discuss the value of hypothesis-driven algorithmic modeling approaches, which integrate behavioral, neural, and cognitive outputs to refine hypothesis testing. Then, we review the advantages of data-driven dimensionality reduction and machine learning methods for uncovering novel predictor variables and elucidating relationships in high-dimensional data. Overall, this review highlights recent breakthroughs in cognitive mapping, model-based analysis of behavior/risky decision-making, patterns of drug taking, relapse, and neuromarker discovery, and showcases the benefits of novel modeling techniques, across both preclinical and clinical data.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1415-23.2023</identifier><identifier>PMID: 37940590</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Addictions ; Behavior, Addictive ; Cognitive ability ; Decision analysis ; Decision making ; Humans ; Hypotheses ; Machine Learning ; Modelling ; Reviews ; Risk-Taking ; Substance use ; Substance-Related Disorders ; Symposium and Mini-Symposium</subject><ispartof>The Journal of neuroscience, 2023-11, Vol.43 (45), p.7547-7553</ispartof><rights>Copyright © 2023 the authors.</rights><rights>Copyright Society for Neuroscience Nov 8, 2023</rights><rights>Copyright © 2023 the authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c390t-36900b287b2be709f8a38ec3fea0f140b02813a09bffcf40d7b11624c47d40343</cites><orcidid>0000-0002-4865-5482 ; 0000-0003-1834-7021 ; 0000-0002-5562-6495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634572/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634572/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37940590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilkinson, Courtney S</creatorcontrib><creatorcontrib>Luján, Miguel Á</creatorcontrib><creatorcontrib>Hales, Claire</creatorcontrib><creatorcontrib>Costa, Kauê M</creatorcontrib><creatorcontrib>Fiore, Vincenzo G</creatorcontrib><creatorcontrib>Knackstedt, Lori A</creatorcontrib><creatorcontrib>Kober, Hedy</creatorcontrib><title>Listening to the Data: Computational Approaches to Addiction and Learning</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Computational approaches hold great promise for identifying novel treatment targets and creating translational therapeutics for substance use disorders. From circuitries underlying decision-making to computationally derived neural markers of drug-cue reactivity, this review is a summary of the approaches to data presented at our 2023 Society for Neuroscience Mini-Symposium. Here, we highlight data- and hypothesis-driven computational approaches that recently afforded advancements in addiction and learning neuroscience. First, we discuss the value of hypothesis-driven algorithmic modeling approaches, which integrate behavioral, neural, and cognitive outputs to refine hypothesis testing. Then, we review the advantages of data-driven dimensionality reduction and machine learning methods for uncovering novel predictor variables and elucidating relationships in high-dimensional data. Overall, this review highlights recent breakthroughs in cognitive mapping, model-based analysis of behavior/risky decision-making, patterns of drug taking, relapse, and neuromarker discovery, and showcases the benefits of novel modeling techniques, across both preclinical and clinical data.</description><subject>Addictions</subject><subject>Behavior, Addictive</subject><subject>Cognitive ability</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Machine Learning</subject><subject>Modelling</subject><subject>Reviews</subject><subject>Risk-Taking</subject><subject>Substance use</subject><subject>Substance-Related Disorders</subject><subject>Symposium and Mini-Symposium</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkVFP2zAUhS3EBF3hL6BIvPCScu3rxDEvU1XY1qka0oBny3EcGpTGme0g8e9JBlTbnizd851j-x5CzigsaMbw8sfPm4dft3er9YJymqUMFwwYHpDZqMqUcaCHZAZMQJpzwY_J5xCeAEAAFUfkGIXkkEmYkfWmCdF2TfeYRJfErU2uddRXycrt-iHq2LhOt8my773TZmvDRC2rqjGTkuiuSjZW-8l_Qj7Vug329P2ck4evN_er7-nm9tt6tdykBiXEFHMJULJClKy0AmRdaCyswdpqqCmHElhBUYMs69rUHCpRUpozbrioOCDHOfnyltsP5c5WxnbR61b1vtlp_6KcbtS_Stds1aN7VhRy5JlgY8LFe4J3vwcboto1wdi21Z11Q1CsKArAHMbr5uT8P_TJDX5cyR9KokSk2Ujlb5TxLgRv6_1rKKipLrWvS011qXEy1TUaz_7-y9720Q--Ap3LkTk</recordid><startdate>20231108</startdate><enddate>20231108</enddate><creator>Wilkinson, Courtney S</creator><creator>Luján, Miguel Á</creator><creator>Hales, Claire</creator><creator>Costa, Kauê M</creator><creator>Fiore, Vincenzo G</creator><creator>Knackstedt, Lori A</creator><creator>Kober, Hedy</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4865-5482</orcidid><orcidid>https://orcid.org/0000-0003-1834-7021</orcidid><orcidid>https://orcid.org/0000-0002-5562-6495</orcidid></search><sort><creationdate>20231108</creationdate><title>Listening to the Data: Computational Approaches to Addiction and Learning</title><author>Wilkinson, Courtney S ; Luján, Miguel Á ; Hales, Claire ; Costa, Kauê M ; Fiore, Vincenzo G ; Knackstedt, Lori A ; Kober, Hedy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-36900b287b2be709f8a38ec3fea0f140b02813a09bffcf40d7b11624c47d40343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Addictions</topic><topic>Behavior, Addictive</topic><topic>Cognitive ability</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Machine Learning</topic><topic>Modelling</topic><topic>Reviews</topic><topic>Risk-Taking</topic><topic>Substance use</topic><topic>Substance-Related Disorders</topic><topic>Symposium and Mini-Symposium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilkinson, Courtney S</creatorcontrib><creatorcontrib>Luján, Miguel Á</creatorcontrib><creatorcontrib>Hales, Claire</creatorcontrib><creatorcontrib>Costa, Kauê M</creatorcontrib><creatorcontrib>Fiore, Vincenzo G</creatorcontrib><creatorcontrib>Knackstedt, Lori A</creatorcontrib><creatorcontrib>Kober, Hedy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilkinson, Courtney S</au><au>Luján, Miguel Á</au><au>Hales, Claire</au><au>Costa, Kauê M</au><au>Fiore, Vincenzo G</au><au>Knackstedt, Lori A</au><au>Kober, Hedy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Listening to the Data: Computational Approaches to Addiction and Learning</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2023-11-08</date><risdate>2023</risdate><volume>43</volume><issue>45</issue><spage>7547</spage><epage>7553</epage><pages>7547-7553</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Computational approaches hold great promise for identifying novel treatment targets and creating translational therapeutics for substance use disorders. From circuitries underlying decision-making to computationally derived neural markers of drug-cue reactivity, this review is a summary of the approaches to data presented at our 2023 Society for Neuroscience Mini-Symposium. Here, we highlight data- and hypothesis-driven computational approaches that recently afforded advancements in addiction and learning neuroscience. First, we discuss the value of hypothesis-driven algorithmic modeling approaches, which integrate behavioral, neural, and cognitive outputs to refine hypothesis testing. Then, we review the advantages of data-driven dimensionality reduction and machine learning methods for uncovering novel predictor variables and elucidating relationships in high-dimensional data. Overall, this review highlights recent breakthroughs in cognitive mapping, model-based analysis of behavior/risky decision-making, patterns of drug taking, relapse, and neuromarker discovery, and showcases the benefits of novel modeling techniques, across both preclinical and clinical data.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>37940590</pmid><doi>10.1523/JNEUROSCI.1415-23.2023</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4865-5482</orcidid><orcidid>https://orcid.org/0000-0003-1834-7021</orcidid><orcidid>https://orcid.org/0000-0002-5562-6495</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2023-11, Vol.43 (45), p.7547-7553
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10634572
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Addictions
Behavior, Addictive
Cognitive ability
Decision analysis
Decision making
Humans
Hypotheses
Machine Learning
Modelling
Reviews
Risk-Taking
Substance use
Substance-Related Disorders
Symposium and Mini-Symposium
title Listening to the Data: Computational Approaches to Addiction and Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Listening%20to%20the%20Data:%20Computational%20Approaches%20to%20Addiction%20and%20Learning&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Wilkinson,%20Courtney%20S&rft.date=2023-11-08&rft.volume=43&rft.issue=45&rft.spage=7547&rft.epage=7553&rft.pages=7547-7553&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1415-23.2023&rft_dat=%3Cproquest_pubme%3E2888036040%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889393315&rft_id=info:pmid/37940590&rfr_iscdi=true