Disrupted stiffness ratio alters nuclear mechanosensing

The ability of endothelial cells to sense and respond to dynamic changes in blood flow is critical for vascular homeostasis and cardiovascular health. The mechanical and geometric properties of the nuclear and cytoplasmic compartments affect mechanotransduction. We hypothesized that alterations of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Matter 2023-10, Vol.6 (10), p.3608-3630
Hauptverfasser: Walther, Brandon K., Sears, Adam P., Mojiri, Anahita, Avazmohammadi, Reza, Gu, Jianhua, Chumakova, Olga V., Rajeeva Pandian, Navaneeth Krishna, Dominic, Abishai, Martiel, Jean-Louis, Yazdani, Saami K., Cooke, John P., Ohayon, Jacques, Pettigrew, Roderic I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3630
container_issue 10
container_start_page 3608
container_title Matter
container_volume 6
creator Walther, Brandon K.
Sears, Adam P.
Mojiri, Anahita
Avazmohammadi, Reza
Gu, Jianhua
Chumakova, Olga V.
Rajeeva Pandian, Navaneeth Krishna
Dominic, Abishai
Martiel, Jean-Louis
Yazdani, Saami K.
Cooke, John P.
Ohayon, Jacques
Pettigrew, Roderic I.
description The ability of endothelial cells to sense and respond to dynamic changes in blood flow is critical for vascular homeostasis and cardiovascular health. The mechanical and geometric properties of the nuclear and cytoplasmic compartments affect mechanotransduction. We hypothesized that alterations of these parameters have mechanosensory consequences. Using atomic force microscopy and mathematical modeling, we assessed how nuclear and cytoplasmic compartment stiffnesses modulate shear stress transfer to the nucleus in aging endothelial cells. Our computational studies revealed that the critical parameter controlling shear transfer is not the individual mechanics of these compartments but the stiffness ratio between them. Replicatively aged cells had a reduced stiffness ratio, attenuating shear transfer, while the ratio was not altered in a genetic model of accelerated aging. We provide a theoretical framework suggesting that dysregulation of the shear stress response can be uniquely imparted by relative mechanical changes in subcellular compartments. [Display omitted] •Pipeline to extract geometrically faithful nuclear and cytoplasmic stiffnesses•Changes to nuclear and cytoplasmic stiffnesses alter nuclear mechanosensing•The critical parameter for shear sensing is the nuclear/cytoplasmic stiffness ratio•Transfer relation persists under dynamic loading and cellular viscoelasticity Endothelial cell shear mechanosensing, how the cells respond to fluid forces, is critical for function. However, how the mechanical properties of cells contribute to this process remains unclear. With recent understanding of the nucleus as a mechanosensor, we built a pipeline to extract the mechanical properties of the cytoplasm and nucleus to study computationally how they affect shear stress transmission to the nucleus. Our in silico results demonstrate that the critical parameter determining shear stress transfer to the nucleus is the ratio between the nuclear and cytoplasmic stiffnesses. This transfer relation provides a global picture of nuclear mechanosensing, remaining consistent under different loading conditions and when incorporating viscoelasticity. Our results provide fundamental insight into mechanosensing as a holistic process of many interacting mechanical components. Elucidating nuclear mechanosensing will drive our understanding of physiology and disease states. The nucleus has emerged as an important mechanosensor. We used a correlative atomic force microscopy/super-
doi_str_mv 10.1016/j.matt.2023.08.010
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10627551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2590238523004174</els_id><sourcerecordid>2887474620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-55ce592bdd5c34baa5a4a1a5aca8928a1249b3cdbb2ba08f07fbf91b0b6a2d963</originalsourceid><addsrcrecordid>eNp9kU9rFDEYh4MottR-AQ8yRz3smL-TDAhSqm2FBS96Dm8y73SzzGTWJLPQb-8MW0v14CUJye_3hOQh5C2jNaOs-bivRyil5pSLmpqaMvqCnHPV0g0XRr18tj4jlznvKaWcM6GleE3OhG6F5kKdE_0l5DQfCnZVLqHvI-ZcJShhqmAomHIVZz8gpGpEv4M4ZYw5xPs35FUPQ8bLx_mC_Lz5-uP6brP9fvvt-mq78aLVZaOUR9Vy13XKC-kAFEhgy-jBtNwA47J1wnfOcQfU9FT3rm-Zo64B3rWNuCCfT9zD7EbsPMaSYLCHFEZID3aCYP8-iWFn76ejZbThWim2ED6cCLt_endXW7vuUSmlahpzXLPvH29L068Zc7FjyB6HASJOc7bcGC21bDhdovwU9WnKOWH_xGbUrobs3q6G7GrIUmMXQ0vp3fPXPFX--FgCn04BXP70GDDZ7ANGj11I6IvtpvA__m9zzqNC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887474620</pqid></control><display><type>article</type><title>Disrupted stiffness ratio alters nuclear mechanosensing</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Walther, Brandon K. ; Sears, Adam P. ; Mojiri, Anahita ; Avazmohammadi, Reza ; Gu, Jianhua ; Chumakova, Olga V. ; Rajeeva Pandian, Navaneeth Krishna ; Dominic, Abishai ; Martiel, Jean-Louis ; Yazdani, Saami K. ; Cooke, John P. ; Ohayon, Jacques ; Pettigrew, Roderic I.</creator><creatorcontrib>Walther, Brandon K. ; Sears, Adam P. ; Mojiri, Anahita ; Avazmohammadi, Reza ; Gu, Jianhua ; Chumakova, Olga V. ; Rajeeva Pandian, Navaneeth Krishna ; Dominic, Abishai ; Martiel, Jean-Louis ; Yazdani, Saami K. ; Cooke, John P. ; Ohayon, Jacques ; Pettigrew, Roderic I.</creatorcontrib><description>The ability of endothelial cells to sense and respond to dynamic changes in blood flow is critical for vascular homeostasis and cardiovascular health. The mechanical and geometric properties of the nuclear and cytoplasmic compartments affect mechanotransduction. We hypothesized that alterations of these parameters have mechanosensory consequences. Using atomic force microscopy and mathematical modeling, we assessed how nuclear and cytoplasmic compartment stiffnesses modulate shear stress transfer to the nucleus in aging endothelial cells. Our computational studies revealed that the critical parameter controlling shear transfer is not the individual mechanics of these compartments but the stiffness ratio between them. Replicatively aged cells had a reduced stiffness ratio, attenuating shear transfer, while the ratio was not altered in a genetic model of accelerated aging. We provide a theoretical framework suggesting that dysregulation of the shear stress response can be uniquely imparted by relative mechanical changes in subcellular compartments. [Display omitted] •Pipeline to extract geometrically faithful nuclear and cytoplasmic stiffnesses•Changes to nuclear and cytoplasmic stiffnesses alter nuclear mechanosensing•The critical parameter for shear sensing is the nuclear/cytoplasmic stiffness ratio•Transfer relation persists under dynamic loading and cellular viscoelasticity Endothelial cell shear mechanosensing, how the cells respond to fluid forces, is critical for function. However, how the mechanical properties of cells contribute to this process remains unclear. With recent understanding of the nucleus as a mechanosensor, we built a pipeline to extract the mechanical properties of the cytoplasm and nucleus to study computationally how they affect shear stress transmission to the nucleus. Our in silico results demonstrate that the critical parameter determining shear stress transfer to the nucleus is the ratio between the nuclear and cytoplasmic stiffnesses. This transfer relation provides a global picture of nuclear mechanosensing, remaining consistent under different loading conditions and when incorporating viscoelasticity. Our results provide fundamental insight into mechanosensing as a holistic process of many interacting mechanical components. Elucidating nuclear mechanosensing will drive our understanding of physiology and disease states. The nucleus has emerged as an important mechanosensor. We used a correlative atomic force microscopy/super-resolution pipeline to computationally study how the mechanical properties of the cytoplasm and the nucleus affect nuclear shear mechanosensing. We found that the critical parameter in this process is the stiffness ratio between the nucleus and the cytoplasm. Our results provide a fundamental understanding of how the nucleus perceives shear stress.</description><identifier>ISSN: 2590-2385</identifier><identifier>ISSN: 2590-2393</identifier><identifier>EISSN: 2590-2385</identifier><identifier>DOI: 10.1016/j.matt.2023.08.010</identifier><identifier>PMID: 37937235</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>biomechanics ; biophysics ; Cognitive science ; endothelial cells ; Life Sciences ; mechanobiology ; Neuroscience ; shear stress ; soft matter</subject><ispartof>Matter, 2023-10, Vol.6 (10), p.3608-3630</ispartof><rights>2023 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c397t-55ce592bdd5c34baa5a4a1a5aca8928a1249b3cdbb2ba08f07fbf91b0b6a2d963</cites><orcidid>0000-0002-4086-8897 ; 0000-0002-7696-2519 ; 0000-0002-9719-6382 ; 0000-0003-0033-9138 ; 0000-0003-2623-3630 ; 0000-0001-9787-1117 ; 0000-0002-6923-6850 ; 0000-0003-0936-5113 ; 0000-0003-0320-8600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37937235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04445668$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Walther, Brandon K.</creatorcontrib><creatorcontrib>Sears, Adam P.</creatorcontrib><creatorcontrib>Mojiri, Anahita</creatorcontrib><creatorcontrib>Avazmohammadi, Reza</creatorcontrib><creatorcontrib>Gu, Jianhua</creatorcontrib><creatorcontrib>Chumakova, Olga V.</creatorcontrib><creatorcontrib>Rajeeva Pandian, Navaneeth Krishna</creatorcontrib><creatorcontrib>Dominic, Abishai</creatorcontrib><creatorcontrib>Martiel, Jean-Louis</creatorcontrib><creatorcontrib>Yazdani, Saami K.</creatorcontrib><creatorcontrib>Cooke, John P.</creatorcontrib><creatorcontrib>Ohayon, Jacques</creatorcontrib><creatorcontrib>Pettigrew, Roderic I.</creatorcontrib><title>Disrupted stiffness ratio alters nuclear mechanosensing</title><title>Matter</title><addtitle>Matter</addtitle><description>The ability of endothelial cells to sense and respond to dynamic changes in blood flow is critical for vascular homeostasis and cardiovascular health. The mechanical and geometric properties of the nuclear and cytoplasmic compartments affect mechanotransduction. We hypothesized that alterations of these parameters have mechanosensory consequences. Using atomic force microscopy and mathematical modeling, we assessed how nuclear and cytoplasmic compartment stiffnesses modulate shear stress transfer to the nucleus in aging endothelial cells. Our computational studies revealed that the critical parameter controlling shear transfer is not the individual mechanics of these compartments but the stiffness ratio between them. Replicatively aged cells had a reduced stiffness ratio, attenuating shear transfer, while the ratio was not altered in a genetic model of accelerated aging. We provide a theoretical framework suggesting that dysregulation of the shear stress response can be uniquely imparted by relative mechanical changes in subcellular compartments. [Display omitted] •Pipeline to extract geometrically faithful nuclear and cytoplasmic stiffnesses•Changes to nuclear and cytoplasmic stiffnesses alter nuclear mechanosensing•The critical parameter for shear sensing is the nuclear/cytoplasmic stiffness ratio•Transfer relation persists under dynamic loading and cellular viscoelasticity Endothelial cell shear mechanosensing, how the cells respond to fluid forces, is critical for function. However, how the mechanical properties of cells contribute to this process remains unclear. With recent understanding of the nucleus as a mechanosensor, we built a pipeline to extract the mechanical properties of the cytoplasm and nucleus to study computationally how they affect shear stress transmission to the nucleus. Our in silico results demonstrate that the critical parameter determining shear stress transfer to the nucleus is the ratio between the nuclear and cytoplasmic stiffnesses. This transfer relation provides a global picture of nuclear mechanosensing, remaining consistent under different loading conditions and when incorporating viscoelasticity. Our results provide fundamental insight into mechanosensing as a holistic process of many interacting mechanical components. Elucidating nuclear mechanosensing will drive our understanding of physiology and disease states. The nucleus has emerged as an important mechanosensor. We used a correlative atomic force microscopy/super-resolution pipeline to computationally study how the mechanical properties of the cytoplasm and the nucleus affect nuclear shear mechanosensing. We found that the critical parameter in this process is the stiffness ratio between the nucleus and the cytoplasm. Our results provide a fundamental understanding of how the nucleus perceives shear stress.</description><subject>biomechanics</subject><subject>biophysics</subject><subject>Cognitive science</subject><subject>endothelial cells</subject><subject>Life Sciences</subject><subject>mechanobiology</subject><subject>Neuroscience</subject><subject>shear stress</subject><subject>soft matter</subject><issn>2590-2385</issn><issn>2590-2393</issn><issn>2590-2385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rFDEYh4MottR-AQ8yRz3smL-TDAhSqm2FBS96Dm8y73SzzGTWJLPQb-8MW0v14CUJye_3hOQh5C2jNaOs-bivRyil5pSLmpqaMvqCnHPV0g0XRr18tj4jlznvKaWcM6GleE3OhG6F5kKdE_0l5DQfCnZVLqHvI-ZcJShhqmAomHIVZz8gpGpEv4M4ZYw5xPs35FUPQ8bLx_mC_Lz5-uP6brP9fvvt-mq78aLVZaOUR9Vy13XKC-kAFEhgy-jBtNwA47J1wnfOcQfU9FT3rm-Zo64B3rWNuCCfT9zD7EbsPMaSYLCHFEZID3aCYP8-iWFn76ejZbThWim2ED6cCLt_endXW7vuUSmlahpzXLPvH29L068Zc7FjyB6HASJOc7bcGC21bDhdovwU9WnKOWH_xGbUrobs3q6G7GrIUmMXQ0vp3fPXPFX--FgCn04BXP70GDDZ7ANGj11I6IvtpvA__m9zzqNC</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Walther, Brandon K.</creator><creator>Sears, Adam P.</creator><creator>Mojiri, Anahita</creator><creator>Avazmohammadi, Reza</creator><creator>Gu, Jianhua</creator><creator>Chumakova, Olga V.</creator><creator>Rajeeva Pandian, Navaneeth Krishna</creator><creator>Dominic, Abishai</creator><creator>Martiel, Jean-Louis</creator><creator>Yazdani, Saami K.</creator><creator>Cooke, John P.</creator><creator>Ohayon, Jacques</creator><creator>Pettigrew, Roderic I.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4086-8897</orcidid><orcidid>https://orcid.org/0000-0002-7696-2519</orcidid><orcidid>https://orcid.org/0000-0002-9719-6382</orcidid><orcidid>https://orcid.org/0000-0003-0033-9138</orcidid><orcidid>https://orcid.org/0000-0003-2623-3630</orcidid><orcidid>https://orcid.org/0000-0001-9787-1117</orcidid><orcidid>https://orcid.org/0000-0002-6923-6850</orcidid><orcidid>https://orcid.org/0000-0003-0936-5113</orcidid><orcidid>https://orcid.org/0000-0003-0320-8600</orcidid></search><sort><creationdate>20231004</creationdate><title>Disrupted stiffness ratio alters nuclear mechanosensing</title><author>Walther, Brandon K. ; Sears, Adam P. ; Mojiri, Anahita ; Avazmohammadi, Reza ; Gu, Jianhua ; Chumakova, Olga V. ; Rajeeva Pandian, Navaneeth Krishna ; Dominic, Abishai ; Martiel, Jean-Louis ; Yazdani, Saami K. ; Cooke, John P. ; Ohayon, Jacques ; Pettigrew, Roderic I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-55ce592bdd5c34baa5a4a1a5aca8928a1249b3cdbb2ba08f07fbf91b0b6a2d963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>biomechanics</topic><topic>biophysics</topic><topic>Cognitive science</topic><topic>endothelial cells</topic><topic>Life Sciences</topic><topic>mechanobiology</topic><topic>Neuroscience</topic><topic>shear stress</topic><topic>soft matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walther, Brandon K.</creatorcontrib><creatorcontrib>Sears, Adam P.</creatorcontrib><creatorcontrib>Mojiri, Anahita</creatorcontrib><creatorcontrib>Avazmohammadi, Reza</creatorcontrib><creatorcontrib>Gu, Jianhua</creatorcontrib><creatorcontrib>Chumakova, Olga V.</creatorcontrib><creatorcontrib>Rajeeva Pandian, Navaneeth Krishna</creatorcontrib><creatorcontrib>Dominic, Abishai</creatorcontrib><creatorcontrib>Martiel, Jean-Louis</creatorcontrib><creatorcontrib>Yazdani, Saami K.</creatorcontrib><creatorcontrib>Cooke, John P.</creatorcontrib><creatorcontrib>Ohayon, Jacques</creatorcontrib><creatorcontrib>Pettigrew, Roderic I.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walther, Brandon K.</au><au>Sears, Adam P.</au><au>Mojiri, Anahita</au><au>Avazmohammadi, Reza</au><au>Gu, Jianhua</au><au>Chumakova, Olga V.</au><au>Rajeeva Pandian, Navaneeth Krishna</au><au>Dominic, Abishai</au><au>Martiel, Jean-Louis</au><au>Yazdani, Saami K.</au><au>Cooke, John P.</au><au>Ohayon, Jacques</au><au>Pettigrew, Roderic I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disrupted stiffness ratio alters nuclear mechanosensing</atitle><jtitle>Matter</jtitle><addtitle>Matter</addtitle><date>2023-10-04</date><risdate>2023</risdate><volume>6</volume><issue>10</issue><spage>3608</spage><epage>3630</epage><pages>3608-3630</pages><issn>2590-2385</issn><issn>2590-2393</issn><eissn>2590-2385</eissn><abstract>The ability of endothelial cells to sense and respond to dynamic changes in blood flow is critical for vascular homeostasis and cardiovascular health. The mechanical and geometric properties of the nuclear and cytoplasmic compartments affect mechanotransduction. We hypothesized that alterations of these parameters have mechanosensory consequences. Using atomic force microscopy and mathematical modeling, we assessed how nuclear and cytoplasmic compartment stiffnesses modulate shear stress transfer to the nucleus in aging endothelial cells. Our computational studies revealed that the critical parameter controlling shear transfer is not the individual mechanics of these compartments but the stiffness ratio between them. Replicatively aged cells had a reduced stiffness ratio, attenuating shear transfer, while the ratio was not altered in a genetic model of accelerated aging. We provide a theoretical framework suggesting that dysregulation of the shear stress response can be uniquely imparted by relative mechanical changes in subcellular compartments. [Display omitted] •Pipeline to extract geometrically faithful nuclear and cytoplasmic stiffnesses•Changes to nuclear and cytoplasmic stiffnesses alter nuclear mechanosensing•The critical parameter for shear sensing is the nuclear/cytoplasmic stiffness ratio•Transfer relation persists under dynamic loading and cellular viscoelasticity Endothelial cell shear mechanosensing, how the cells respond to fluid forces, is critical for function. However, how the mechanical properties of cells contribute to this process remains unclear. With recent understanding of the nucleus as a mechanosensor, we built a pipeline to extract the mechanical properties of the cytoplasm and nucleus to study computationally how they affect shear stress transmission to the nucleus. Our in silico results demonstrate that the critical parameter determining shear stress transfer to the nucleus is the ratio between the nuclear and cytoplasmic stiffnesses. This transfer relation provides a global picture of nuclear mechanosensing, remaining consistent under different loading conditions and when incorporating viscoelasticity. Our results provide fundamental insight into mechanosensing as a holistic process of many interacting mechanical components. Elucidating nuclear mechanosensing will drive our understanding of physiology and disease states. The nucleus has emerged as an important mechanosensor. We used a correlative atomic force microscopy/super-resolution pipeline to computationally study how the mechanical properties of the cytoplasm and the nucleus affect nuclear shear mechanosensing. We found that the critical parameter in this process is the stiffness ratio between the nucleus and the cytoplasm. Our results provide a fundamental understanding of how the nucleus perceives shear stress.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37937235</pmid><doi>10.1016/j.matt.2023.08.010</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-4086-8897</orcidid><orcidid>https://orcid.org/0000-0002-7696-2519</orcidid><orcidid>https://orcid.org/0000-0002-9719-6382</orcidid><orcidid>https://orcid.org/0000-0003-0033-9138</orcidid><orcidid>https://orcid.org/0000-0003-2623-3630</orcidid><orcidid>https://orcid.org/0000-0001-9787-1117</orcidid><orcidid>https://orcid.org/0000-0002-6923-6850</orcidid><orcidid>https://orcid.org/0000-0003-0936-5113</orcidid><orcidid>https://orcid.org/0000-0003-0320-8600</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2590-2385
ispartof Matter, 2023-10, Vol.6 (10), p.3608-3630
issn 2590-2385
2590-2393
2590-2385
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10627551
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects biomechanics
biophysics
Cognitive science
endothelial cells
Life Sciences
mechanobiology
Neuroscience
shear stress
soft matter
title Disrupted stiffness ratio alters nuclear mechanosensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disrupted%20stiffness%20ratio%20alters%20nuclear%20mechanosensing&rft.jtitle=Matter&rft.au=Walther,%20Brandon%20K.&rft.date=2023-10-04&rft.volume=6&rft.issue=10&rft.spage=3608&rft.epage=3630&rft.pages=3608-3630&rft.issn=2590-2385&rft.eissn=2590-2385&rft_id=info:doi/10.1016/j.matt.2023.08.010&rft_dat=%3Cproquest_pubme%3E2887474620%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887474620&rft_id=info:pmid/37937235&rft_els_id=S2590238523004174&rfr_iscdi=true