Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe

, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-10, Vol.120 (44), p.e2308984120
Hauptverfasser: Li, Tong, Tang, Shanjie, Li, Wei, Zhang, Shuaibin, Wang, Jianli, Pan, Duofeng, Lin, Zhelong, Ma, Xuan, Chang, Yanan, Liu, Bo, Sun, Jing, Wang, Xiaofei, Zhao, Mengjie, You, Changqing, Luo, Haofei, Wang, Meijia, Ye, Xingguo, Zhai, Jixian, Shen, Zhongbao, Du, Huilong, Song, Xianwei, Huang, Gai, Cao, Xiaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 44
container_start_page e2308984120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Li, Tong
Tang, Shanjie
Li, Wei
Zhang, Shuaibin
Wang, Jianli
Pan, Duofeng
Lin, Zhelong
Ma, Xuan
Chang, Yanan
Liu, Bo
Sun, Jing
Wang, Xiaofei
Zhao, Mengjie
You, Changqing
Luo, Haofei
Wang, Meijia
Ye, Xingguo
Zhai, Jixian
Shen, Zhongbao
Du, Huilong
Song, Xianwei
Huang, Gai
Cao, Xiaofeng
description , a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in . We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild with features such as polyploidization and self-incompatibility.
doi_str_mv 10.1073/pnas.2308984120
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10623014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881711088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-5b746e900fb53889747a0fa187b7aa39587e3a1a6f2c498aa80826025c30b94f3</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaTZJz70VQS-9OBl92JJPpYQ0KSzk0OQsxt7xroItuZIdyH9fm6Rpm9PAzG8e8-Yx9lHAmQCjzseA-UwqsLXVQsIbthFQi6LSNbxlGwBpCqulPmLHOd8DQF1aeM-OlLFG29JuWH9FIQ7E6SH28-Rj4Bh23Ac_eex5k4h2Pux57Ph0IH6bln5LSHyfMGe-pcdhzrw9-EAh-8x3cfABp3Vl5S_nBfMY-M-JxpFO2bsO-0wfnusJu_t-eXtxXWxvrn5cfNsWrZZyKsrG6IpqgK4plbW10QahQ2FNYxDV4sGQQoFVJ1tdW0QLVlYgy1ZBU-tOnbCvT7rj3Ay0aylMCXs3Jj9genQRvft_EvzB7eODE1AtzxR6UfjyrJDir5ny5AafW-p7DBTn7KS1wggB1i7o51fofZxTWPytVFnLUiqxUOdPVJtizom6l2sEuDVKt0bp_ka5bHz618QL_yc79RuJo5uh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885925231</pqid></control><display><type>article</type><title>Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Tong ; Tang, Shanjie ; Li, Wei ; Zhang, Shuaibin ; Wang, Jianli ; Pan, Duofeng ; Lin, Zhelong ; Ma, Xuan ; Chang, Yanan ; Liu, Bo ; Sun, Jing ; Wang, Xiaofei ; Zhao, Mengjie ; You, Changqing ; Luo, Haofei ; Wang, Meijia ; Ye, Xingguo ; Zhai, Jixian ; Shen, Zhongbao ; Du, Huilong ; Song, Xianwei ; Huang, Gai ; Cao, Xiaofeng</creator><creatorcontrib>Li, Tong ; Tang, Shanjie ; Li, Wei ; Zhang, Shuaibin ; Wang, Jianli ; Pan, Duofeng ; Lin, Zhelong ; Ma, Xuan ; Chang, Yanan ; Liu, Bo ; Sun, Jing ; Wang, Xiaofei ; Zhao, Mengjie ; You, Changqing ; Luo, Haofei ; Wang, Meijia ; Ye, Xingguo ; Zhai, Jixian ; Shen, Zhongbao ; Du, Huilong ; Song, Xianwei ; Huang, Gai ; Cao, Xiaofeng</creatorcontrib><description>, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in . We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild with features such as polyploidization and self-incompatibility.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2308984120</identifier><identifier>PMID: 37874858</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptability ; Biological Sciences ; Breeding ; CRISPR ; Editing ; Environmental restoration ; Evolution, Molecular ; Forage ; Genetic improvement ; Genetic modification ; Genetic transformation ; Genome ; Genomes ; Genomics ; Grasses ; Incompatibility ; Information processing ; Leymus chinensis ; Plant Breeding ; Poaceae - genetics ; Polyploidy ; Self-incompatibility ; Steppes ; Transposons ; Triticeae</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-10, Vol.120 (44), p.e2308984120</ispartof><rights>Copyright National Academy of Sciences Oct 31, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-5b746e900fb53889747a0fa187b7aa39587e3a1a6f2c498aa80826025c30b94f3</citedby><cites>FETCH-LOGICAL-c422t-5b746e900fb53889747a0fa187b7aa39587e3a1a6f2c498aa80826025c30b94f3</cites><orcidid>0000-0001-6349-5598 ; 0000-0001-7097-9590 ; 0000-0002-0217-0666 ; 0000-0003-2094-2532 ; 0000-0003-0426-9691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623014/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623014/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37874858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Tang, Shanjie</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Shuaibin</creatorcontrib><creatorcontrib>Wang, Jianli</creatorcontrib><creatorcontrib>Pan, Duofeng</creatorcontrib><creatorcontrib>Lin, Zhelong</creatorcontrib><creatorcontrib>Ma, Xuan</creatorcontrib><creatorcontrib>Chang, Yanan</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Zhao, Mengjie</creatorcontrib><creatorcontrib>You, Changqing</creatorcontrib><creatorcontrib>Luo, Haofei</creatorcontrib><creatorcontrib>Wang, Meijia</creatorcontrib><creatorcontrib>Ye, Xingguo</creatorcontrib><creatorcontrib>Zhai, Jixian</creatorcontrib><creatorcontrib>Shen, Zhongbao</creatorcontrib><creatorcontrib>Du, Huilong</creatorcontrib><creatorcontrib>Song, Xianwei</creatorcontrib><creatorcontrib>Huang, Gai</creatorcontrib><creatorcontrib>Cao, Xiaofeng</creatorcontrib><title>Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in . We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild with features such as polyploidization and self-incompatibility.</description><subject>Adaptability</subject><subject>Biological Sciences</subject><subject>Breeding</subject><subject>CRISPR</subject><subject>Editing</subject><subject>Environmental restoration</subject><subject>Evolution, Molecular</subject><subject>Forage</subject><subject>Genetic improvement</subject><subject>Genetic modification</subject><subject>Genetic transformation</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Grasses</subject><subject>Incompatibility</subject><subject>Information processing</subject><subject>Leymus chinensis</subject><subject>Plant Breeding</subject><subject>Poaceae - genetics</subject><subject>Polyploidy</subject><subject>Self-incompatibility</subject><subject>Steppes</subject><subject>Transposons</subject><subject>Triticeae</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVpaTZJz70VQS-9OBl92JJPpYQ0KSzk0OQsxt7xroItuZIdyH9fm6Rpm9PAzG8e8-Yx9lHAmQCjzseA-UwqsLXVQsIbthFQi6LSNbxlGwBpCqulPmLHOd8DQF1aeM-OlLFG29JuWH9FIQ7E6SH28-Rj4Bh23Ac_eex5k4h2Pux57Ph0IH6bln5LSHyfMGe-pcdhzrw9-EAh-8x3cfABp3Vl5S_nBfMY-M-JxpFO2bsO-0wfnusJu_t-eXtxXWxvrn5cfNsWrZZyKsrG6IpqgK4plbW10QahQ2FNYxDV4sGQQoFVJ1tdW0QLVlYgy1ZBU-tOnbCvT7rj3Ay0aylMCXs3Jj9genQRvft_EvzB7eODE1AtzxR6UfjyrJDir5ny5AafW-p7DBTn7KS1wggB1i7o51fofZxTWPytVFnLUiqxUOdPVJtizom6l2sEuDVKt0bp_ka5bHz618QL_yc79RuJo5uh</recordid><startdate>20231031</startdate><enddate>20231031</enddate><creator>Li, Tong</creator><creator>Tang, Shanjie</creator><creator>Li, Wei</creator><creator>Zhang, Shuaibin</creator><creator>Wang, Jianli</creator><creator>Pan, Duofeng</creator><creator>Lin, Zhelong</creator><creator>Ma, Xuan</creator><creator>Chang, Yanan</creator><creator>Liu, Bo</creator><creator>Sun, Jing</creator><creator>Wang, Xiaofei</creator><creator>Zhao, Mengjie</creator><creator>You, Changqing</creator><creator>Luo, Haofei</creator><creator>Wang, Meijia</creator><creator>Ye, Xingguo</creator><creator>Zhai, Jixian</creator><creator>Shen, Zhongbao</creator><creator>Du, Huilong</creator><creator>Song, Xianwei</creator><creator>Huang, Gai</creator><creator>Cao, Xiaofeng</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6349-5598</orcidid><orcidid>https://orcid.org/0000-0001-7097-9590</orcidid><orcidid>https://orcid.org/0000-0002-0217-0666</orcidid><orcidid>https://orcid.org/0000-0003-2094-2532</orcidid><orcidid>https://orcid.org/0000-0003-0426-9691</orcidid></search><sort><creationdate>20231031</creationdate><title>Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe</title><author>Li, Tong ; Tang, Shanjie ; Li, Wei ; Zhang, Shuaibin ; Wang, Jianli ; Pan, Duofeng ; Lin, Zhelong ; Ma, Xuan ; Chang, Yanan ; Liu, Bo ; Sun, Jing ; Wang, Xiaofei ; Zhao, Mengjie ; You, Changqing ; Luo, Haofei ; Wang, Meijia ; Ye, Xingguo ; Zhai, Jixian ; Shen, Zhongbao ; Du, Huilong ; Song, Xianwei ; Huang, Gai ; Cao, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-5b746e900fb53889747a0fa187b7aa39587e3a1a6f2c498aa80826025c30b94f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptability</topic><topic>Biological Sciences</topic><topic>Breeding</topic><topic>CRISPR</topic><topic>Editing</topic><topic>Environmental restoration</topic><topic>Evolution, Molecular</topic><topic>Forage</topic><topic>Genetic improvement</topic><topic>Genetic modification</topic><topic>Genetic transformation</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Grasses</topic><topic>Incompatibility</topic><topic>Information processing</topic><topic>Leymus chinensis</topic><topic>Plant Breeding</topic><topic>Poaceae - genetics</topic><topic>Polyploidy</topic><topic>Self-incompatibility</topic><topic>Steppes</topic><topic>Transposons</topic><topic>Triticeae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Tang, Shanjie</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Shuaibin</creatorcontrib><creatorcontrib>Wang, Jianli</creatorcontrib><creatorcontrib>Pan, Duofeng</creatorcontrib><creatorcontrib>Lin, Zhelong</creatorcontrib><creatorcontrib>Ma, Xuan</creatorcontrib><creatorcontrib>Chang, Yanan</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Zhao, Mengjie</creatorcontrib><creatorcontrib>You, Changqing</creatorcontrib><creatorcontrib>Luo, Haofei</creatorcontrib><creatorcontrib>Wang, Meijia</creatorcontrib><creatorcontrib>Ye, Xingguo</creatorcontrib><creatorcontrib>Zhai, Jixian</creatorcontrib><creatorcontrib>Shen, Zhongbao</creatorcontrib><creatorcontrib>Du, Huilong</creatorcontrib><creatorcontrib>Song, Xianwei</creatorcontrib><creatorcontrib>Huang, Gai</creatorcontrib><creatorcontrib>Cao, Xiaofeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tong</au><au>Tang, Shanjie</au><au>Li, Wei</au><au>Zhang, Shuaibin</au><au>Wang, Jianli</au><au>Pan, Duofeng</au><au>Lin, Zhelong</au><au>Ma, Xuan</au><au>Chang, Yanan</au><au>Liu, Bo</au><au>Sun, Jing</au><au>Wang, Xiaofei</au><au>Zhao, Mengjie</au><au>You, Changqing</au><au>Luo, Haofei</au><au>Wang, Meijia</au><au>Ye, Xingguo</au><au>Zhai, Jixian</au><au>Shen, Zhongbao</au><au>Du, Huilong</au><au>Song, Xianwei</au><au>Huang, Gai</au><au>Cao, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-10-31</date><risdate>2023</risdate><volume>120</volume><issue>44</issue><spage>e2308984120</spage><pages>e2308984120-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in . We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild with features such as polyploidization and self-incompatibility.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37874858</pmid><doi>10.1073/pnas.2308984120</doi><orcidid>https://orcid.org/0000-0001-6349-5598</orcidid><orcidid>https://orcid.org/0000-0001-7097-9590</orcidid><orcidid>https://orcid.org/0000-0002-0217-0666</orcidid><orcidid>https://orcid.org/0000-0003-2094-2532</orcidid><orcidid>https://orcid.org/0000-0003-0426-9691</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-10, Vol.120 (44), p.e2308984120
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10623014
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adaptability
Biological Sciences
Breeding
CRISPR
Editing
Environmental restoration
Evolution, Molecular
Forage
Genetic improvement
Genetic modification
Genetic transformation
Genome
Genomes
Genomics
Grasses
Incompatibility
Information processing
Leymus chinensis
Plant Breeding
Poaceae - genetics
Polyploidy
Self-incompatibility
Steppes
Transposons
Triticeae
title Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20evolution%20and%20initial%20breeding%20of%20the%20Triticeae%20grass%20Leymus%20chinensis%20dominating%20the%20Eurasian%20Steppe&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Li,%20Tong&rft.date=2023-10-31&rft.volume=120&rft.issue=44&rft.spage=e2308984120&rft.pages=e2308984120-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2308984120&rft_dat=%3Cproquest_pubme%3E2881711088%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885925231&rft_id=info:pmid/37874858&rfr_iscdi=true