Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe
, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important sp...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2023-10, Vol.120 (44), p.e2308984120 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 44 |
container_start_page | e2308984120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Li, Tong Tang, Shanjie Li, Wei Zhang, Shuaibin Wang, Jianli Pan, Duofeng Lin, Zhelong Ma, Xuan Chang, Yanan Liu, Bo Sun, Jing Wang, Xiaofei Zhao, Mengjie You, Changqing Luo, Haofei Wang, Meijia Ye, Xingguo Zhai, Jixian Shen, Zhongbao Du, Huilong Song, Xianwei Huang, Gai Cao, Xiaofeng |
description | , a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of
with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to
and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in
. We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild
with features such as polyploidization and self-incompatibility. |
doi_str_mv | 10.1073/pnas.2308984120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10623014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881711088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-5b746e900fb53889747a0fa187b7aa39587e3a1a6f2c498aa80826025c30b94f3</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaTZJz70VQS-9OBl92JJPpYQ0KSzk0OQsxt7xroItuZIdyH9fm6Rpm9PAzG8e8-Yx9lHAmQCjzseA-UwqsLXVQsIbthFQi6LSNbxlGwBpCqulPmLHOd8DQF1aeM-OlLFG29JuWH9FIQ7E6SH28-Rj4Bh23Ac_eex5k4h2Pux57Ph0IH6bln5LSHyfMGe-pcdhzrw9-EAh-8x3cfABp3Vl5S_nBfMY-M-JxpFO2bsO-0wfnusJu_t-eXtxXWxvrn5cfNsWrZZyKsrG6IpqgK4plbW10QahQ2FNYxDV4sGQQoFVJ1tdW0QLVlYgy1ZBU-tOnbCvT7rj3Ay0aylMCXs3Jj9genQRvft_EvzB7eODE1AtzxR6UfjyrJDir5ny5AafW-p7DBTn7KS1wggB1i7o51fofZxTWPytVFnLUiqxUOdPVJtizom6l2sEuDVKt0bp_ka5bHz618QL_yc79RuJo5uh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885925231</pqid></control><display><type>article</type><title>Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Tong ; Tang, Shanjie ; Li, Wei ; Zhang, Shuaibin ; Wang, Jianli ; Pan, Duofeng ; Lin, Zhelong ; Ma, Xuan ; Chang, Yanan ; Liu, Bo ; Sun, Jing ; Wang, Xiaofei ; Zhao, Mengjie ; You, Changqing ; Luo, Haofei ; Wang, Meijia ; Ye, Xingguo ; Zhai, Jixian ; Shen, Zhongbao ; Du, Huilong ; Song, Xianwei ; Huang, Gai ; Cao, Xiaofeng</creator><creatorcontrib>Li, Tong ; Tang, Shanjie ; Li, Wei ; Zhang, Shuaibin ; Wang, Jianli ; Pan, Duofeng ; Lin, Zhelong ; Ma, Xuan ; Chang, Yanan ; Liu, Bo ; Sun, Jing ; Wang, Xiaofei ; Zhao, Mengjie ; You, Changqing ; Luo, Haofei ; Wang, Meijia ; Ye, Xingguo ; Zhai, Jixian ; Shen, Zhongbao ; Du, Huilong ; Song, Xianwei ; Huang, Gai ; Cao, Xiaofeng</creatorcontrib><description>, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of
with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to
and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in
. We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild
with features such as polyploidization and self-incompatibility.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2308984120</identifier><identifier>PMID: 37874858</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptability ; Biological Sciences ; Breeding ; CRISPR ; Editing ; Environmental restoration ; Evolution, Molecular ; Forage ; Genetic improvement ; Genetic modification ; Genetic transformation ; Genome ; Genomes ; Genomics ; Grasses ; Incompatibility ; Information processing ; Leymus chinensis ; Plant Breeding ; Poaceae - genetics ; Polyploidy ; Self-incompatibility ; Steppes ; Transposons ; Triticeae</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-10, Vol.120 (44), p.e2308984120</ispartof><rights>Copyright National Academy of Sciences Oct 31, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-5b746e900fb53889747a0fa187b7aa39587e3a1a6f2c498aa80826025c30b94f3</citedby><cites>FETCH-LOGICAL-c422t-5b746e900fb53889747a0fa187b7aa39587e3a1a6f2c498aa80826025c30b94f3</cites><orcidid>0000-0001-6349-5598 ; 0000-0001-7097-9590 ; 0000-0002-0217-0666 ; 0000-0003-2094-2532 ; 0000-0003-0426-9691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623014/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623014/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37874858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Tang, Shanjie</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Shuaibin</creatorcontrib><creatorcontrib>Wang, Jianli</creatorcontrib><creatorcontrib>Pan, Duofeng</creatorcontrib><creatorcontrib>Lin, Zhelong</creatorcontrib><creatorcontrib>Ma, Xuan</creatorcontrib><creatorcontrib>Chang, Yanan</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Zhao, Mengjie</creatorcontrib><creatorcontrib>You, Changqing</creatorcontrib><creatorcontrib>Luo, Haofei</creatorcontrib><creatorcontrib>Wang, Meijia</creatorcontrib><creatorcontrib>Ye, Xingguo</creatorcontrib><creatorcontrib>Zhai, Jixian</creatorcontrib><creatorcontrib>Shen, Zhongbao</creatorcontrib><creatorcontrib>Du, Huilong</creatorcontrib><creatorcontrib>Song, Xianwei</creatorcontrib><creatorcontrib>Huang, Gai</creatorcontrib><creatorcontrib>Cao, Xiaofeng</creatorcontrib><title>Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of
with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to
and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in
. We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild
with features such as polyploidization and self-incompatibility.</description><subject>Adaptability</subject><subject>Biological Sciences</subject><subject>Breeding</subject><subject>CRISPR</subject><subject>Editing</subject><subject>Environmental restoration</subject><subject>Evolution, Molecular</subject><subject>Forage</subject><subject>Genetic improvement</subject><subject>Genetic modification</subject><subject>Genetic transformation</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Grasses</subject><subject>Incompatibility</subject><subject>Information processing</subject><subject>Leymus chinensis</subject><subject>Plant Breeding</subject><subject>Poaceae - genetics</subject><subject>Polyploidy</subject><subject>Self-incompatibility</subject><subject>Steppes</subject><subject>Transposons</subject><subject>Triticeae</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVpaTZJz70VQS-9OBl92JJPpYQ0KSzk0OQsxt7xroItuZIdyH9fm6Rpm9PAzG8e8-Yx9lHAmQCjzseA-UwqsLXVQsIbthFQi6LSNbxlGwBpCqulPmLHOd8DQF1aeM-OlLFG29JuWH9FIQ7E6SH28-Rj4Bh23Ac_eex5k4h2Pux57Ph0IH6bln5LSHyfMGe-pcdhzrw9-EAh-8x3cfABp3Vl5S_nBfMY-M-JxpFO2bsO-0wfnusJu_t-eXtxXWxvrn5cfNsWrZZyKsrG6IpqgK4plbW10QahQ2FNYxDV4sGQQoFVJ1tdW0QLVlYgy1ZBU-tOnbCvT7rj3Ay0aylMCXs3Jj9genQRvft_EvzB7eODE1AtzxR6UfjyrJDir5ny5AafW-p7DBTn7KS1wggB1i7o51fofZxTWPytVFnLUiqxUOdPVJtizom6l2sEuDVKt0bp_ka5bHz618QL_yc79RuJo5uh</recordid><startdate>20231031</startdate><enddate>20231031</enddate><creator>Li, Tong</creator><creator>Tang, Shanjie</creator><creator>Li, Wei</creator><creator>Zhang, Shuaibin</creator><creator>Wang, Jianli</creator><creator>Pan, Duofeng</creator><creator>Lin, Zhelong</creator><creator>Ma, Xuan</creator><creator>Chang, Yanan</creator><creator>Liu, Bo</creator><creator>Sun, Jing</creator><creator>Wang, Xiaofei</creator><creator>Zhao, Mengjie</creator><creator>You, Changqing</creator><creator>Luo, Haofei</creator><creator>Wang, Meijia</creator><creator>Ye, Xingguo</creator><creator>Zhai, Jixian</creator><creator>Shen, Zhongbao</creator><creator>Du, Huilong</creator><creator>Song, Xianwei</creator><creator>Huang, Gai</creator><creator>Cao, Xiaofeng</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6349-5598</orcidid><orcidid>https://orcid.org/0000-0001-7097-9590</orcidid><orcidid>https://orcid.org/0000-0002-0217-0666</orcidid><orcidid>https://orcid.org/0000-0003-2094-2532</orcidid><orcidid>https://orcid.org/0000-0003-0426-9691</orcidid></search><sort><creationdate>20231031</creationdate><title>Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe</title><author>Li, Tong ; Tang, Shanjie ; Li, Wei ; Zhang, Shuaibin ; Wang, Jianli ; Pan, Duofeng ; Lin, Zhelong ; Ma, Xuan ; Chang, Yanan ; Liu, Bo ; Sun, Jing ; Wang, Xiaofei ; Zhao, Mengjie ; You, Changqing ; Luo, Haofei ; Wang, Meijia ; Ye, Xingguo ; Zhai, Jixian ; Shen, Zhongbao ; Du, Huilong ; Song, Xianwei ; Huang, Gai ; Cao, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-5b746e900fb53889747a0fa187b7aa39587e3a1a6f2c498aa80826025c30b94f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptability</topic><topic>Biological Sciences</topic><topic>Breeding</topic><topic>CRISPR</topic><topic>Editing</topic><topic>Environmental restoration</topic><topic>Evolution, Molecular</topic><topic>Forage</topic><topic>Genetic improvement</topic><topic>Genetic modification</topic><topic>Genetic transformation</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Grasses</topic><topic>Incompatibility</topic><topic>Information processing</topic><topic>Leymus chinensis</topic><topic>Plant Breeding</topic><topic>Poaceae - genetics</topic><topic>Polyploidy</topic><topic>Self-incompatibility</topic><topic>Steppes</topic><topic>Transposons</topic><topic>Triticeae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Tang, Shanjie</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Shuaibin</creatorcontrib><creatorcontrib>Wang, Jianli</creatorcontrib><creatorcontrib>Pan, Duofeng</creatorcontrib><creatorcontrib>Lin, Zhelong</creatorcontrib><creatorcontrib>Ma, Xuan</creatorcontrib><creatorcontrib>Chang, Yanan</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Zhao, Mengjie</creatorcontrib><creatorcontrib>You, Changqing</creatorcontrib><creatorcontrib>Luo, Haofei</creatorcontrib><creatorcontrib>Wang, Meijia</creatorcontrib><creatorcontrib>Ye, Xingguo</creatorcontrib><creatorcontrib>Zhai, Jixian</creatorcontrib><creatorcontrib>Shen, Zhongbao</creatorcontrib><creatorcontrib>Du, Huilong</creatorcontrib><creatorcontrib>Song, Xianwei</creatorcontrib><creatorcontrib>Huang, Gai</creatorcontrib><creatorcontrib>Cao, Xiaofeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tong</au><au>Tang, Shanjie</au><au>Li, Wei</au><au>Zhang, Shuaibin</au><au>Wang, Jianli</au><au>Pan, Duofeng</au><au>Lin, Zhelong</au><au>Ma, Xuan</au><au>Chang, Yanan</au><au>Liu, Bo</au><au>Sun, Jing</au><au>Wang, Xiaofei</au><au>Zhao, Mengjie</au><au>You, Changqing</au><au>Luo, Haofei</au><au>Wang, Meijia</au><au>Ye, Xingguo</au><au>Zhai, Jixian</au><au>Shen, Zhongbao</au><au>Du, Huilong</au><au>Song, Xianwei</au><au>Huang, Gai</au><au>Cao, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-10-31</date><risdate>2023</risdate><volume>120</volume><issue>44</issue><spage>e2308984120</spage><pages>e2308984120-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of
with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to
and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in
. We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild
with features such as polyploidization and self-incompatibility.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37874858</pmid><doi>10.1073/pnas.2308984120</doi><orcidid>https://orcid.org/0000-0001-6349-5598</orcidid><orcidid>https://orcid.org/0000-0001-7097-9590</orcidid><orcidid>https://orcid.org/0000-0002-0217-0666</orcidid><orcidid>https://orcid.org/0000-0003-2094-2532</orcidid><orcidid>https://orcid.org/0000-0003-0426-9691</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-10, Vol.120 (44), p.e2308984120 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10623014 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adaptability Biological Sciences Breeding CRISPR Editing Environmental restoration Evolution, Molecular Forage Genetic improvement Genetic modification Genetic transformation Genome Genomes Genomics Grasses Incompatibility Information processing Leymus chinensis Plant Breeding Poaceae - genetics Polyploidy Self-incompatibility Steppes Transposons Triticeae |
title | Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20evolution%20and%20initial%20breeding%20of%20the%20Triticeae%20grass%20Leymus%20chinensis%20dominating%20the%20Eurasian%20Steppe&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Li,%20Tong&rft.date=2023-10-31&rft.volume=120&rft.issue=44&rft.spage=e2308984120&rft.pages=e2308984120-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2308984120&rft_dat=%3Cproquest_pubme%3E2881711088%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885925231&rft_id=info:pmid/37874858&rfr_iscdi=true |