Phosphorylation controls spatial and temporal activities of motor‐PRC1 complexes to complete mitosis

During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2023-11, Vol.42 (21), p.e113647-n/a
Hauptverfasser: Gluszek‐Kustusz, Agata, Craske, Benjamin, Legal, Thibault, McHugh, Toni, Welburn, Julie PI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page e113647
container_title The EMBO journal
container_volume 42
creator Gluszek‐Kustusz, Agata
Craske, Benjamin
Legal, Thibault
McHugh, Toni
Welburn, Julie PI
description During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle to coordinate the segregation of chromosomes is unknown. Here, we combine structural and cell biology approaches to show that the human CENP‐E motor, which is essential for chromosome capture and alignment by microtubules, binds to PRC1 through a conserved hydrophobic motif. This binding mechanism is also used by Kinesin‐4 Kif4A:PRC1. Using in vitro reconstitution, we demonstrate that CENP‐E slides antiparallel PRC1‐crosslinked microtubules. We find that the regulation of CENP‐E ‐PRC1 interaction is spatially and temporally coupled with relocalization to overlapping microtubules in anaphase. Finally, we demonstrate that the PRC1–microtubule motor interaction is essential in anaphase to control chromosome partitioning, retain central spindle integrity and ensure cytokinesis. Taken together our findings reveal the molecular basis for the cell cycle regulation of motor‐PRC1 complexes to couple chromosome segregation and cytokinesis. Synopsis PRC1 associates with microtubule motors to stabilize the anaphase central spindle, however how they interact remains elusive. This study reveals the molecular basis for the cell cycle regulation of mitotic motor‐PRC1 complexes to organize antiparallel microtubule bundle, and to ensure central spindle integrity, midbody assembly and cytokinesis. Kinesin motors Kif4A and CENP‐E bind PRC1 using a bipartite hydrophobic motif. Phosphorylation of CENP‐E controls its affinity for PRC1 to provide temporal and spatial control for the interaction. CENP‐E slides antiparallel microtubules in the presence of PRC1. Disruption of the PRC1:motor interaction disrupts central spindle integrity and midbody assembly. Kinesin motors Kif4A and CENP‐E bind PRC1 via a bipartite hydrophobic motif to ensure central spindle integrity and midbody assembly.
doi_str_mv 10.15252/embj.2023113647
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10620760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2853947864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4787-6d656af45c7dcf608a18516d49f950c6b30022527b7ee057d6a00edaed8fc7323</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EotPCnhWKxKabtNdO_BMJCdFRoa1aUVWwtjyO0_HIiYPtKcyuj8Aj8Cw8Ck9S05n-wIaVZd_vHp3jg9ArDHuYEkr2TT9b7BEgFcYVq_kTNME1g5IAp0_RBAjDZY1Fs4W2Y1wAABUcP0dbFacNEQ2doMvzuY_j3IeVU8n6odB-SMG7WMQxPyhXqKEtkulHH5T79VPpZK9ssiYWvit6n3z4ff3j_GKK82Y_OvM9T5LfXJIpept8tPEFetYpF83LzbmDvnw4_Dw9Kk8_fTyevj8tdc0FL1nLKFNdTTVvdcdAKCwoZm3ddA0FzWYVAMnB-YwbA5S3TAGYVplWdJpXpNpB79a643LWm1abnEY5OQbbq7CSXln592Swc3npryQGln-NQVbY3SgE_3VpYpK9jdo4pwbjl1ESQasmm2V1Rt_8gy78Mgw5X6YEhWwZV5mCNaWDjzGY7t4NBnlbo_xTo3yoMa-8fpzifuGutwy8XQPfrDOr_wrKw7ODk0f6N04Srqc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885095013</pqid></control><display><type>article</type><title>Phosphorylation controls spatial and temporal activities of motor‐PRC1 complexes to complete mitosis</title><source>Wiley-Blackwell Journals</source><source>Wiley-Blackwell Open Access Backfiles</source><source>MEDLINE</source><source>Springer_OA刊</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gluszek‐Kustusz, Agata ; Craske, Benjamin ; Legal, Thibault ; McHugh, Toni ; Welburn, Julie PI</creator><creatorcontrib>Gluszek‐Kustusz, Agata ; Craske, Benjamin ; Legal, Thibault ; McHugh, Toni ; Welburn, Julie PI</creatorcontrib><description>During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle to coordinate the segregation of chromosomes is unknown. Here, we combine structural and cell biology approaches to show that the human CENP‐E motor, which is essential for chromosome capture and alignment by microtubules, binds to PRC1 through a conserved hydrophobic motif. This binding mechanism is also used by Kinesin‐4 Kif4A:PRC1. Using in vitro reconstitution, we demonstrate that CENP‐E slides antiparallel PRC1‐crosslinked microtubules. We find that the regulation of CENP‐E ‐PRC1 interaction is spatially and temporally coupled with relocalization to overlapping microtubules in anaphase. Finally, we demonstrate that the PRC1–microtubule motor interaction is essential in anaphase to control chromosome partitioning, retain central spindle integrity and ensure cytokinesis. Taken together our findings reveal the molecular basis for the cell cycle regulation of motor‐PRC1 complexes to couple chromosome segregation and cytokinesis. Synopsis PRC1 associates with microtubule motors to stabilize the anaphase central spindle, however how they interact remains elusive. This study reveals the molecular basis for the cell cycle regulation of mitotic motor‐PRC1 complexes to organize antiparallel microtubule bundle, and to ensure central spindle integrity, midbody assembly and cytokinesis. Kinesin motors Kif4A and CENP‐E bind PRC1 using a bipartite hydrophobic motif. Phosphorylation of CENP‐E controls its affinity for PRC1 to provide temporal and spatial control for the interaction. CENP‐E slides antiparallel microtubules in the presence of PRC1. Disruption of the PRC1:motor interaction disrupts central spindle integrity and midbody assembly. Kinesin motors Kif4A and CENP‐E bind PRC1 via a bipartite hydrophobic motif to ensure central spindle integrity and midbody assembly.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2023113647</identifier><identifier>PMID: 37592895</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Anaphase ; Assembly ; Cell cycle ; Cell Cycle Proteins - metabolism ; Cell division ; Chromosomes ; Crosslinking ; Cytokinesis ; Cytokinesis - physiology ; Humans ; Hydrophobicity ; Integrity ; Kinesin ; Kinesins - genetics ; Kinesins - metabolism ; microtubule ; Microtubules ; Microtubules - metabolism ; Mitosis ; Phosphorylation ; Protein interaction ; spindle ; Spindle Apparatus - metabolism</subject><ispartof>The EMBO journal, 2023-11, Vol.42 (21), p.e113647-n/a</ispartof><rights>2023 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4787-6d656af45c7dcf608a18516d49f950c6b30022527b7ee057d6a00edaed8fc7323</citedby><cites>FETCH-LOGICAL-c4787-6d656af45c7dcf608a18516d49f950c6b30022527b7ee057d6a00edaed8fc7323</cites><orcidid>0000-0002-5212-3868 ; 0000-0002-5440-6060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620760/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620760/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37592895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gluszek‐Kustusz, Agata</creatorcontrib><creatorcontrib>Craske, Benjamin</creatorcontrib><creatorcontrib>Legal, Thibault</creatorcontrib><creatorcontrib>McHugh, Toni</creatorcontrib><creatorcontrib>Welburn, Julie PI</creatorcontrib><title>Phosphorylation controls spatial and temporal activities of motor‐PRC1 complexes to complete mitosis</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><description>During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle to coordinate the segregation of chromosomes is unknown. Here, we combine structural and cell biology approaches to show that the human CENP‐E motor, which is essential for chromosome capture and alignment by microtubules, binds to PRC1 through a conserved hydrophobic motif. This binding mechanism is also used by Kinesin‐4 Kif4A:PRC1. Using in vitro reconstitution, we demonstrate that CENP‐E slides antiparallel PRC1‐crosslinked microtubules. We find that the regulation of CENP‐E ‐PRC1 interaction is spatially and temporally coupled with relocalization to overlapping microtubules in anaphase. Finally, we demonstrate that the PRC1–microtubule motor interaction is essential in anaphase to control chromosome partitioning, retain central spindle integrity and ensure cytokinesis. Taken together our findings reveal the molecular basis for the cell cycle regulation of motor‐PRC1 complexes to couple chromosome segregation and cytokinesis. Synopsis PRC1 associates with microtubule motors to stabilize the anaphase central spindle, however how they interact remains elusive. This study reveals the molecular basis for the cell cycle regulation of mitotic motor‐PRC1 complexes to organize antiparallel microtubule bundle, and to ensure central spindle integrity, midbody assembly and cytokinesis. Kinesin motors Kif4A and CENP‐E bind PRC1 using a bipartite hydrophobic motif. Phosphorylation of CENP‐E controls its affinity for PRC1 to provide temporal and spatial control for the interaction. CENP‐E slides antiparallel microtubules in the presence of PRC1. Disruption of the PRC1:motor interaction disrupts central spindle integrity and midbody assembly. Kinesin motors Kif4A and CENP‐E bind PRC1 via a bipartite hydrophobic motif to ensure central spindle integrity and midbody assembly.</description><subject>Anaphase</subject><subject>Assembly</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell division</subject><subject>Chromosomes</subject><subject>Crosslinking</subject><subject>Cytokinesis</subject><subject>Cytokinesis - physiology</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>Integrity</subject><subject>Kinesin</subject><subject>Kinesins - genetics</subject><subject>Kinesins - metabolism</subject><subject>microtubule</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Mitosis</subject><subject>Phosphorylation</subject><subject>Protein interaction</subject><subject>spindle</subject><subject>Spindle Apparatus - metabolism</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EotPCnhWKxKabtNdO_BMJCdFRoa1aUVWwtjyO0_HIiYPtKcyuj8Aj8Cw8Ck9S05n-wIaVZd_vHp3jg9ArDHuYEkr2TT9b7BEgFcYVq_kTNME1g5IAp0_RBAjDZY1Fs4W2Y1wAABUcP0dbFacNEQ2doMvzuY_j3IeVU8n6odB-SMG7WMQxPyhXqKEtkulHH5T79VPpZK9ssiYWvit6n3z4ff3j_GKK82Y_OvM9T5LfXJIpept8tPEFetYpF83LzbmDvnw4_Dw9Kk8_fTyevj8tdc0FL1nLKFNdTTVvdcdAKCwoZm3ddA0FzWYVAMnB-YwbA5S3TAGYVplWdJpXpNpB79a643LWm1abnEY5OQbbq7CSXln592Swc3npryQGln-NQVbY3SgE_3VpYpK9jdo4pwbjl1ESQasmm2V1Rt_8gy78Mgw5X6YEhWwZV5mCNaWDjzGY7t4NBnlbo_xTo3yoMa-8fpzifuGutwy8XQPfrDOr_wrKw7ODk0f6N04Srqc</recordid><startdate>20231102</startdate><enddate>20231102</enddate><creator>Gluszek‐Kustusz, Agata</creator><creator>Craske, Benjamin</creator><creator>Legal, Thibault</creator><creator>McHugh, Toni</creator><creator>Welburn, Julie PI</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5212-3868</orcidid><orcidid>https://orcid.org/0000-0002-5440-6060</orcidid></search><sort><creationdate>20231102</creationdate><title>Phosphorylation controls spatial and temporal activities of motor‐PRC1 complexes to complete mitosis</title><author>Gluszek‐Kustusz, Agata ; Craske, Benjamin ; Legal, Thibault ; McHugh, Toni ; Welburn, Julie PI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4787-6d656af45c7dcf608a18516d49f950c6b30022527b7ee057d6a00edaed8fc7323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anaphase</topic><topic>Assembly</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell division</topic><topic>Chromosomes</topic><topic>Crosslinking</topic><topic>Cytokinesis</topic><topic>Cytokinesis - physiology</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>Integrity</topic><topic>Kinesin</topic><topic>Kinesins - genetics</topic><topic>Kinesins - metabolism</topic><topic>microtubule</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Mitosis</topic><topic>Phosphorylation</topic><topic>Protein interaction</topic><topic>spindle</topic><topic>Spindle Apparatus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gluszek‐Kustusz, Agata</creatorcontrib><creatorcontrib>Craske, Benjamin</creatorcontrib><creatorcontrib>Legal, Thibault</creatorcontrib><creatorcontrib>McHugh, Toni</creatorcontrib><creatorcontrib>Welburn, Julie PI</creatorcontrib><collection>Wiley_OA刊</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gluszek‐Kustusz, Agata</au><au>Craske, Benjamin</au><au>Legal, Thibault</au><au>McHugh, Toni</au><au>Welburn, Julie PI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorylation controls spatial and temporal activities of motor‐PRC1 complexes to complete mitosis</atitle><jtitle>The EMBO journal</jtitle><addtitle>EMBO J</addtitle><date>2023-11-02</date><risdate>2023</risdate><volume>42</volume><issue>21</issue><spage>e113647</spage><epage>n/a</epage><pages>e113647-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle to coordinate the segregation of chromosomes is unknown. Here, we combine structural and cell biology approaches to show that the human CENP‐E motor, which is essential for chromosome capture and alignment by microtubules, binds to PRC1 through a conserved hydrophobic motif. This binding mechanism is also used by Kinesin‐4 Kif4A:PRC1. Using in vitro reconstitution, we demonstrate that CENP‐E slides antiparallel PRC1‐crosslinked microtubules. We find that the regulation of CENP‐E ‐PRC1 interaction is spatially and temporally coupled with relocalization to overlapping microtubules in anaphase. Finally, we demonstrate that the PRC1–microtubule motor interaction is essential in anaphase to control chromosome partitioning, retain central spindle integrity and ensure cytokinesis. Taken together our findings reveal the molecular basis for the cell cycle regulation of motor‐PRC1 complexes to couple chromosome segregation and cytokinesis. Synopsis PRC1 associates with microtubule motors to stabilize the anaphase central spindle, however how they interact remains elusive. This study reveals the molecular basis for the cell cycle regulation of mitotic motor‐PRC1 complexes to organize antiparallel microtubule bundle, and to ensure central spindle integrity, midbody assembly and cytokinesis. Kinesin motors Kif4A and CENP‐E bind PRC1 using a bipartite hydrophobic motif. Phosphorylation of CENP‐E controls its affinity for PRC1 to provide temporal and spatial control for the interaction. CENP‐E slides antiparallel microtubules in the presence of PRC1. Disruption of the PRC1:motor interaction disrupts central spindle integrity and midbody assembly. Kinesin motors Kif4A and CENP‐E bind PRC1 via a bipartite hydrophobic motif to ensure central spindle integrity and midbody assembly.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>37592895</pmid><doi>10.15252/embj.2023113647</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5212-3868</orcidid><orcidid>https://orcid.org/0000-0002-5440-6060</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2023-11, Vol.42 (21), p.e113647-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10620760
source Wiley-Blackwell Journals; Wiley-Blackwell Open Access Backfiles; MEDLINE; Springer_OA刊; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Anaphase
Assembly
Cell cycle
Cell Cycle Proteins - metabolism
Cell division
Chromosomes
Crosslinking
Cytokinesis
Cytokinesis - physiology
Humans
Hydrophobicity
Integrity
Kinesin
Kinesins - genetics
Kinesins - metabolism
microtubule
Microtubules
Microtubules - metabolism
Mitosis
Phosphorylation
Protein interaction
spindle
Spindle Apparatus - metabolism
title Phosphorylation controls spatial and temporal activities of motor‐PRC1 complexes to complete mitosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorylation%20controls%20spatial%20and%20temporal%C2%A0activities%20of%20motor%E2%80%90PRC1%20complexes%20to%20complete%20mitosis&rft.jtitle=The%20EMBO%20journal&rft.au=Gluszek%E2%80%90Kustusz,%20Agata&rft.date=2023-11-02&rft.volume=42&rft.issue=21&rft.spage=e113647&rft.epage=n/a&rft.pages=e113647-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2023113647&rft_dat=%3Cproquest_pubme%3E2853947864%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885095013&rft_id=info:pmid/37592895&rfr_iscdi=true