Phosphorylation controls spatial and temporal activities of motor‐PRC1 complexes to complete mitosis
During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2023-11, Vol.42 (21), p.e113647-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | e113647 |
container_title | The EMBO journal |
container_volume | 42 |
creator | Gluszek‐Kustusz, Agata Craske, Benjamin Legal, Thibault McHugh, Toni Welburn, Julie PI |
description | During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle to coordinate the segregation of chromosomes is unknown. Here, we combine structural and cell biology approaches to show that the human CENP‐E motor, which is essential for chromosome capture and alignment by microtubules, binds to PRC1 through a conserved hydrophobic motif. This binding mechanism is also used by Kinesin‐4 Kif4A:PRC1. Using in vitro reconstitution, we demonstrate that CENP‐E slides antiparallel PRC1‐crosslinked microtubules. We find that the regulation of CENP‐E ‐PRC1 interaction is spatially and temporally coupled with relocalization to overlapping microtubules in anaphase. Finally, we demonstrate that the PRC1–microtubule motor interaction is essential in anaphase to control chromosome partitioning, retain central spindle integrity and ensure cytokinesis. Taken together our findings reveal the molecular basis for the cell cycle regulation of motor‐PRC1 complexes to couple chromosome segregation and cytokinesis.
Synopsis
PRC1 associates with microtubule motors to stabilize the anaphase central spindle, however how they interact remains elusive. This study reveals the molecular basis for the cell cycle regulation of mitotic motor‐PRC1 complexes to organize antiparallel microtubule bundle, and to ensure central spindle integrity, midbody assembly and cytokinesis.
Kinesin motors Kif4A and CENP‐E bind PRC1 using a bipartite hydrophobic motif.
Phosphorylation of CENP‐E controls its affinity for PRC1 to provide temporal and spatial control for the interaction.
CENP‐E slides antiparallel microtubules in the presence of PRC1.
Disruption of the PRC1:motor interaction disrupts central spindle integrity and midbody assembly.
Kinesin motors Kif4A and CENP‐E bind PRC1 via a bipartite hydrophobic motif to ensure central spindle integrity and midbody assembly. |
doi_str_mv | 10.15252/embj.2023113647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10620760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2853947864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4787-6d656af45c7dcf608a18516d49f950c6b30022527b7ee057d6a00edaed8fc7323</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EotPCnhWKxKabtNdO_BMJCdFRoa1aUVWwtjyO0_HIiYPtKcyuj8Aj8Cw8Ck9S05n-wIaVZd_vHp3jg9ArDHuYEkr2TT9b7BEgFcYVq_kTNME1g5IAp0_RBAjDZY1Fs4W2Y1wAABUcP0dbFacNEQ2doMvzuY_j3IeVU8n6odB-SMG7WMQxPyhXqKEtkulHH5T79VPpZK9ssiYWvit6n3z4ff3j_GKK82Y_OvM9T5LfXJIpept8tPEFetYpF83LzbmDvnw4_Dw9Kk8_fTyevj8tdc0FL1nLKFNdTTVvdcdAKCwoZm3ddA0FzWYVAMnB-YwbA5S3TAGYVplWdJpXpNpB79a643LWm1abnEY5OQbbq7CSXln592Swc3npryQGln-NQVbY3SgE_3VpYpK9jdo4pwbjl1ESQasmm2V1Rt_8gy78Mgw5X6YEhWwZV5mCNaWDjzGY7t4NBnlbo_xTo3yoMa-8fpzifuGutwy8XQPfrDOr_wrKw7ODk0f6N04Srqc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885095013</pqid></control><display><type>article</type><title>Phosphorylation controls spatial and temporal activities of motor‐PRC1 complexes to complete mitosis</title><source>Wiley-Blackwell Journals</source><source>Wiley-Blackwell Open Access Backfiles</source><source>MEDLINE</source><source>Springer_OA刊</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gluszek‐Kustusz, Agata ; Craske, Benjamin ; Legal, Thibault ; McHugh, Toni ; Welburn, Julie PI</creator><creatorcontrib>Gluszek‐Kustusz, Agata ; Craske, Benjamin ; Legal, Thibault ; McHugh, Toni ; Welburn, Julie PI</creatorcontrib><description>During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle to coordinate the segregation of chromosomes is unknown. Here, we combine structural and cell biology approaches to show that the human CENP‐E motor, which is essential for chromosome capture and alignment by microtubules, binds to PRC1 through a conserved hydrophobic motif. This binding mechanism is also used by Kinesin‐4 Kif4A:PRC1. Using in vitro reconstitution, we demonstrate that CENP‐E slides antiparallel PRC1‐crosslinked microtubules. We find that the regulation of CENP‐E ‐PRC1 interaction is spatially and temporally coupled with relocalization to overlapping microtubules in anaphase. Finally, we demonstrate that the PRC1–microtubule motor interaction is essential in anaphase to control chromosome partitioning, retain central spindle integrity and ensure cytokinesis. Taken together our findings reveal the molecular basis for the cell cycle regulation of motor‐PRC1 complexes to couple chromosome segregation and cytokinesis.
Synopsis
PRC1 associates with microtubule motors to stabilize the anaphase central spindle, however how they interact remains elusive. This study reveals the molecular basis for the cell cycle regulation of mitotic motor‐PRC1 complexes to organize antiparallel microtubule bundle, and to ensure central spindle integrity, midbody assembly and cytokinesis.
Kinesin motors Kif4A and CENP‐E bind PRC1 using a bipartite hydrophobic motif.
Phosphorylation of CENP‐E controls its affinity for PRC1 to provide temporal and spatial control for the interaction.
CENP‐E slides antiparallel microtubules in the presence of PRC1.
Disruption of the PRC1:motor interaction disrupts central spindle integrity and midbody assembly.
Kinesin motors Kif4A and CENP‐E bind PRC1 via a bipartite hydrophobic motif to ensure central spindle integrity and midbody assembly.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2023113647</identifier><identifier>PMID: 37592895</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Anaphase ; Assembly ; Cell cycle ; Cell Cycle Proteins - metabolism ; Cell division ; Chromosomes ; Crosslinking ; Cytokinesis ; Cytokinesis - physiology ; Humans ; Hydrophobicity ; Integrity ; Kinesin ; Kinesins - genetics ; Kinesins - metabolism ; microtubule ; Microtubules ; Microtubules - metabolism ; Mitosis ; Phosphorylation ; Protein interaction ; spindle ; Spindle Apparatus - metabolism</subject><ispartof>The EMBO journal, 2023-11, Vol.42 (21), p.e113647-n/a</ispartof><rights>2023 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4787-6d656af45c7dcf608a18516d49f950c6b30022527b7ee057d6a00edaed8fc7323</citedby><cites>FETCH-LOGICAL-c4787-6d656af45c7dcf608a18516d49f950c6b30022527b7ee057d6a00edaed8fc7323</cites><orcidid>0000-0002-5212-3868 ; 0000-0002-5440-6060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620760/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620760/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37592895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gluszek‐Kustusz, Agata</creatorcontrib><creatorcontrib>Craske, Benjamin</creatorcontrib><creatorcontrib>Legal, Thibault</creatorcontrib><creatorcontrib>McHugh, Toni</creatorcontrib><creatorcontrib>Welburn, Julie PI</creatorcontrib><title>Phosphorylation controls spatial and temporal activities of motor‐PRC1 complexes to complete mitosis</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><description>During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle to coordinate the segregation of chromosomes is unknown. Here, we combine structural and cell biology approaches to show that the human CENP‐E motor, which is essential for chromosome capture and alignment by microtubules, binds to PRC1 through a conserved hydrophobic motif. This binding mechanism is also used by Kinesin‐4 Kif4A:PRC1. Using in vitro reconstitution, we demonstrate that CENP‐E slides antiparallel PRC1‐crosslinked microtubules. We find that the regulation of CENP‐E ‐PRC1 interaction is spatially and temporally coupled with relocalization to overlapping microtubules in anaphase. Finally, we demonstrate that the PRC1–microtubule motor interaction is essential in anaphase to control chromosome partitioning, retain central spindle integrity and ensure cytokinesis. Taken together our findings reveal the molecular basis for the cell cycle regulation of motor‐PRC1 complexes to couple chromosome segregation and cytokinesis.
Synopsis
PRC1 associates with microtubule motors to stabilize the anaphase central spindle, however how they interact remains elusive. This study reveals the molecular basis for the cell cycle regulation of mitotic motor‐PRC1 complexes to organize antiparallel microtubule bundle, and to ensure central spindle integrity, midbody assembly and cytokinesis.
Kinesin motors Kif4A and CENP‐E bind PRC1 using a bipartite hydrophobic motif.
Phosphorylation of CENP‐E controls its affinity for PRC1 to provide temporal and spatial control for the interaction.
CENP‐E slides antiparallel microtubules in the presence of PRC1.
Disruption of the PRC1:motor interaction disrupts central spindle integrity and midbody assembly.
Kinesin motors Kif4A and CENP‐E bind PRC1 via a bipartite hydrophobic motif to ensure central spindle integrity and midbody assembly.</description><subject>Anaphase</subject><subject>Assembly</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell division</subject><subject>Chromosomes</subject><subject>Crosslinking</subject><subject>Cytokinesis</subject><subject>Cytokinesis - physiology</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>Integrity</subject><subject>Kinesin</subject><subject>Kinesins - genetics</subject><subject>Kinesins - metabolism</subject><subject>microtubule</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Mitosis</subject><subject>Phosphorylation</subject><subject>Protein interaction</subject><subject>spindle</subject><subject>Spindle Apparatus - metabolism</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EotPCnhWKxKabtNdO_BMJCdFRoa1aUVWwtjyO0_HIiYPtKcyuj8Aj8Cw8Ck9S05n-wIaVZd_vHp3jg9ArDHuYEkr2TT9b7BEgFcYVq_kTNME1g5IAp0_RBAjDZY1Fs4W2Y1wAABUcP0dbFacNEQ2doMvzuY_j3IeVU8n6odB-SMG7WMQxPyhXqKEtkulHH5T79VPpZK9ssiYWvit6n3z4ff3j_GKK82Y_OvM9T5LfXJIpept8tPEFetYpF83LzbmDvnw4_Dw9Kk8_fTyevj8tdc0FL1nLKFNdTTVvdcdAKCwoZm3ddA0FzWYVAMnB-YwbA5S3TAGYVplWdJpXpNpB79a643LWm1abnEY5OQbbq7CSXln592Swc3npryQGln-NQVbY3SgE_3VpYpK9jdo4pwbjl1ESQasmm2V1Rt_8gy78Mgw5X6YEhWwZV5mCNaWDjzGY7t4NBnlbo_xTo3yoMa-8fpzifuGutwy8XQPfrDOr_wrKw7ODk0f6N04Srqc</recordid><startdate>20231102</startdate><enddate>20231102</enddate><creator>Gluszek‐Kustusz, Agata</creator><creator>Craske, Benjamin</creator><creator>Legal, Thibault</creator><creator>McHugh, Toni</creator><creator>Welburn, Julie PI</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5212-3868</orcidid><orcidid>https://orcid.org/0000-0002-5440-6060</orcidid></search><sort><creationdate>20231102</creationdate><title>Phosphorylation controls spatial and temporal activities of motor‐PRC1 complexes to complete mitosis</title><author>Gluszek‐Kustusz, Agata ; Craske, Benjamin ; Legal, Thibault ; McHugh, Toni ; Welburn, Julie PI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4787-6d656af45c7dcf608a18516d49f950c6b30022527b7ee057d6a00edaed8fc7323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anaphase</topic><topic>Assembly</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell division</topic><topic>Chromosomes</topic><topic>Crosslinking</topic><topic>Cytokinesis</topic><topic>Cytokinesis - physiology</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>Integrity</topic><topic>Kinesin</topic><topic>Kinesins - genetics</topic><topic>Kinesins - metabolism</topic><topic>microtubule</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Mitosis</topic><topic>Phosphorylation</topic><topic>Protein interaction</topic><topic>spindle</topic><topic>Spindle Apparatus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gluszek‐Kustusz, Agata</creatorcontrib><creatorcontrib>Craske, Benjamin</creatorcontrib><creatorcontrib>Legal, Thibault</creatorcontrib><creatorcontrib>McHugh, Toni</creatorcontrib><creatorcontrib>Welburn, Julie PI</creatorcontrib><collection>Wiley_OA刊</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gluszek‐Kustusz, Agata</au><au>Craske, Benjamin</au><au>Legal, Thibault</au><au>McHugh, Toni</au><au>Welburn, Julie PI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorylation controls spatial and temporal activities of motor‐PRC1 complexes to complete mitosis</atitle><jtitle>The EMBO journal</jtitle><addtitle>EMBO J</addtitle><date>2023-11-02</date><risdate>2023</risdate><volume>42</volume><issue>21</issue><spage>e113647</spage><epage>n/a</epage><pages>e113647-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle to coordinate the segregation of chromosomes is unknown. Here, we combine structural and cell biology approaches to show that the human CENP‐E motor, which is essential for chromosome capture and alignment by microtubules, binds to PRC1 through a conserved hydrophobic motif. This binding mechanism is also used by Kinesin‐4 Kif4A:PRC1. Using in vitro reconstitution, we demonstrate that CENP‐E slides antiparallel PRC1‐crosslinked microtubules. We find that the regulation of CENP‐E ‐PRC1 interaction is spatially and temporally coupled with relocalization to overlapping microtubules in anaphase. Finally, we demonstrate that the PRC1–microtubule motor interaction is essential in anaphase to control chromosome partitioning, retain central spindle integrity and ensure cytokinesis. Taken together our findings reveal the molecular basis for the cell cycle regulation of motor‐PRC1 complexes to couple chromosome segregation and cytokinesis.
Synopsis
PRC1 associates with microtubule motors to stabilize the anaphase central spindle, however how they interact remains elusive. This study reveals the molecular basis for the cell cycle regulation of mitotic motor‐PRC1 complexes to organize antiparallel microtubule bundle, and to ensure central spindle integrity, midbody assembly and cytokinesis.
Kinesin motors Kif4A and CENP‐E bind PRC1 using a bipartite hydrophobic motif.
Phosphorylation of CENP‐E controls its affinity for PRC1 to provide temporal and spatial control for the interaction.
CENP‐E slides antiparallel microtubules in the presence of PRC1.
Disruption of the PRC1:motor interaction disrupts central spindle integrity and midbody assembly.
Kinesin motors Kif4A and CENP‐E bind PRC1 via a bipartite hydrophobic motif to ensure central spindle integrity and midbody assembly.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>37592895</pmid><doi>10.15252/embj.2023113647</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5212-3868</orcidid><orcidid>https://orcid.org/0000-0002-5440-6060</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2023-11, Vol.42 (21), p.e113647-n/a |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10620760 |
source | Wiley-Blackwell Journals; Wiley-Blackwell Open Access Backfiles; MEDLINE; Springer_OA刊; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Anaphase Assembly Cell cycle Cell Cycle Proteins - metabolism Cell division Chromosomes Crosslinking Cytokinesis Cytokinesis - physiology Humans Hydrophobicity Integrity Kinesin Kinesins - genetics Kinesins - metabolism microtubule Microtubules Microtubules - metabolism Mitosis Phosphorylation Protein interaction spindle Spindle Apparatus - metabolism |
title | Phosphorylation controls spatial and temporal activities of motor‐PRC1 complexes to complete mitosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorylation%20controls%20spatial%20and%20temporal%C2%A0activities%20of%20motor%E2%80%90PRC1%20complexes%20to%20complete%20mitosis&rft.jtitle=The%20EMBO%20journal&rft.au=Gluszek%E2%80%90Kustusz,%20Agata&rft.date=2023-11-02&rft.volume=42&rft.issue=21&rft.spage=e113647&rft.epage=n/a&rft.pages=e113647-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2023113647&rft_dat=%3Cproquest_pubme%3E2853947864%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885095013&rft_id=info:pmid/37592895&rfr_iscdi=true |