Proteome census upon nutrient stress reveals Golgiphagy membrane receptors
During nutrient stress, macroautophagy degrades cellular macromolecules, thereby providing biosynthetic building blocks while simultaneously remodelling the proteome 1 , 2 . Although the machinery responsible for initiation of macroautophagy has been well characterized 3 , 4 , our understanding of t...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2023-11, Vol.623 (7985), p.167-174 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174 |
---|---|
container_issue | 7985 |
container_start_page | 167 |
container_title | Nature (London) |
container_volume | 623 |
creator | Hickey, Kelsey L. Swarup, Sharan Smith, Ian R. Paoli, Julia C. Miguel Whelan, Enya Paulo, Joao A. Harper, J. Wade |
description | During nutrient stress, macroautophagy degrades cellular macromolecules, thereby providing biosynthetic building blocks while simultaneously remodelling the proteome
1
,
2
. Although the machinery responsible for initiation of macroautophagy has been well characterized
3
,
4
, our understanding of the extent to which individual proteins, protein complexes and organelles are selected for autophagic degradation, and the underlying targeting mechanisms, is limited. Here we use orthogonal proteomic strategies to provide a spatial proteome census of autophagic cargo during nutrient stress in mammalian cells. We find that macroautophagy has selectivity for recycling membrane-bound organelles (principally Golgi and endoplasmic reticulum). Through autophagic cargo prioritization, we identify a complex of membrane-embedded proteins, YIPF3 and YIPF4, as receptors for Golgiphagy. During nutrient stress, YIPF3 and YIPF4 interact with ATG8 proteins through LIR motifs and are mobilized into autophagosomes that traffic to lysosomes in a process that requires the canonical autophagic machinery. Cells lacking YIPF3 or YIPF4 are selectively defective in elimination of a specific cohort of Golgi membrane proteins during nutrient stress. Moreover, YIPF3 and YIPF4 play an analogous role in Golgi remodelling during programmed conversion of stem cells to the neuronal lineage in vitro. Collectively, the findings of this study reveal prioritization of membrane protein cargo during nutrient-stress-dependent proteome remodelling and identify a Golgi remodelling pathway that requires membrane-embedded receptors.
A proteomics analysis demonstrates that, during nutrient stress, mammalian cells prioritize degradation by autophagy of membrane proteins and identifies receptors that mediate this process at the Golgi and also have a role in Golgi remodelling during neuronal differentiation. |
doi_str_mv | 10.1038/s41586-023-06657-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10620096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886078318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-47acf1733b564caaac859b110cbbc7adc17fe18cea3da9c4d6cf9106d5de8f663</originalsourceid><addsrcrecordid>eNp9kTtPxDAQhC0EguPxByhQJBqawDpObKdC6MRTSFBAbTnO5ghK4mAnJ_HvcTjeBZWL-Xa8s0PIPoVjCkye-JRmkseQsBg4z0TM18iMpoLHKZdincwAEhmDZHyLbHv_DAAZFekm2WJCZELm-Yzc3Ds7oG0xMtj50Udjb7uoGwdXYzdEfnDofeRwibrx0aVtFnX_pBevUYtt4XSHQTPYD9b5XbJRBQj3Pt4d8nhx_jC_im_vLq_nZ7exSUU2xKnQpqKCsSLjqdFaG5nlBaVgisIIXRoqKqTSoGalzk1aclPlFHiZlSgrztkOOV359mPRYhn2HpxuVO_qVrtXZXWtfitd_aQWdqmCSQKQTw5HHw7OvozoB9XW3mDThDx29CqRAsIdwxUDevgHfbaj60K-QEkOQjI6UcmKMs5677D62oaCmrpSq65U6Eq9d6WmLQ5-5vga-SwnAGwF-CB1C3Tff_9j-wZuFqJn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886078318</pqid></control><display><type>article</type><title>Proteome census upon nutrient stress reveals Golgiphagy membrane receptors</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Hickey, Kelsey L. ; Swarup, Sharan ; Smith, Ian R. ; Paoli, Julia C. ; Miguel Whelan, Enya ; Paulo, Joao A. ; Harper, J. Wade</creator><creatorcontrib>Hickey, Kelsey L. ; Swarup, Sharan ; Smith, Ian R. ; Paoli, Julia C. ; Miguel Whelan, Enya ; Paulo, Joao A. ; Harper, J. Wade</creatorcontrib><description>During nutrient stress, macroautophagy degrades cellular macromolecules, thereby providing biosynthetic building blocks while simultaneously remodelling the proteome
1
,
2
. Although the machinery responsible for initiation of macroautophagy has been well characterized
3
,
4
, our understanding of the extent to which individual proteins, protein complexes and organelles are selected for autophagic degradation, and the underlying targeting mechanisms, is limited. Here we use orthogonal proteomic strategies to provide a spatial proteome census of autophagic cargo during nutrient stress in mammalian cells. We find that macroautophagy has selectivity for recycling membrane-bound organelles (principally Golgi and endoplasmic reticulum). Through autophagic cargo prioritization, we identify a complex of membrane-embedded proteins, YIPF3 and YIPF4, as receptors for Golgiphagy. During nutrient stress, YIPF3 and YIPF4 interact with ATG8 proteins through LIR motifs and are mobilized into autophagosomes that traffic to lysosomes in a process that requires the canonical autophagic machinery. Cells lacking YIPF3 or YIPF4 are selectively defective in elimination of a specific cohort of Golgi membrane proteins during nutrient stress. Moreover, YIPF3 and YIPF4 play an analogous role in Golgi remodelling during programmed conversion of stem cells to the neuronal lineage in vitro. Collectively, the findings of this study reveal prioritization of membrane protein cargo during nutrient-stress-dependent proteome remodelling and identify a Golgi remodelling pathway that requires membrane-embedded receptors.
A proteomics analysis demonstrates that, during nutrient stress, mammalian cells prioritize degradation by autophagy of membrane proteins and identifies receptors that mediate this process at the Golgi and also have a role in Golgi remodelling during neuronal differentiation.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-06657-6</identifier><identifier>PMID: 37757899</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/1 ; 631/1647/2067 ; 631/378/368 ; 631/80/39/2346 ; 631/80/642/1525 ; 82 ; 82/58 ; Amino acids ; Animals ; Autophagy ; Autophagy - physiology ; Autophagy-Related Protein 8 Family - metabolism ; Biosynthesis ; Cargo ; Cell surface receptors ; Census ; Censuses ; Endoplasmic Reticulum ; Golgi apparatus ; Golgi Apparatus - metabolism ; Humanities and Social Sciences ; Kinases ; Lysosomes ; Macromolecules ; Mammalian cells ; Mammals - metabolism ; Membrane proteins ; Membrane Proteins - metabolism ; Membranes ; multidisciplinary ; Neural stem cells ; Nutrients ; Nutrients - metabolism ; Ontology ; Organelles ; Phagosomes ; Protein transport ; Proteins ; Proteome - metabolism ; Proteomes ; Proteomics ; Receptors ; Science ; Science (multidisciplinary) ; Stem cells</subject><ispartof>Nature (London), 2023-11, Vol.623 (7985), p.167-174</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Nature Publishing Group Nov 2, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-47acf1733b564caaac859b110cbbc7adc17fe18cea3da9c4d6cf9106d5de8f663</citedby><cites>FETCH-LOGICAL-c475t-47acf1733b564caaac859b110cbbc7adc17fe18cea3da9c4d6cf9106d5de8f663</cites><orcidid>0000-0003-0226-5582 ; 0000-0002-4291-413X ; 0000-0002-6944-7236 ; 0000-0001-8266-1766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-023-06657-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-023-06657-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37757899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hickey, Kelsey L.</creatorcontrib><creatorcontrib>Swarup, Sharan</creatorcontrib><creatorcontrib>Smith, Ian R.</creatorcontrib><creatorcontrib>Paoli, Julia C.</creatorcontrib><creatorcontrib>Miguel Whelan, Enya</creatorcontrib><creatorcontrib>Paulo, Joao A.</creatorcontrib><creatorcontrib>Harper, J. Wade</creatorcontrib><title>Proteome census upon nutrient stress reveals Golgiphagy membrane receptors</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>During nutrient stress, macroautophagy degrades cellular macromolecules, thereby providing biosynthetic building blocks while simultaneously remodelling the proteome
1
,
2
. Although the machinery responsible for initiation of macroautophagy has been well characterized
3
,
4
, our understanding of the extent to which individual proteins, protein complexes and organelles are selected for autophagic degradation, and the underlying targeting mechanisms, is limited. Here we use orthogonal proteomic strategies to provide a spatial proteome census of autophagic cargo during nutrient stress in mammalian cells. We find that macroautophagy has selectivity for recycling membrane-bound organelles (principally Golgi and endoplasmic reticulum). Through autophagic cargo prioritization, we identify a complex of membrane-embedded proteins, YIPF3 and YIPF4, as receptors for Golgiphagy. During nutrient stress, YIPF3 and YIPF4 interact with ATG8 proteins through LIR motifs and are mobilized into autophagosomes that traffic to lysosomes in a process that requires the canonical autophagic machinery. Cells lacking YIPF3 or YIPF4 are selectively defective in elimination of a specific cohort of Golgi membrane proteins during nutrient stress. Moreover, YIPF3 and YIPF4 play an analogous role in Golgi remodelling during programmed conversion of stem cells to the neuronal lineage in vitro. Collectively, the findings of this study reveal prioritization of membrane protein cargo during nutrient-stress-dependent proteome remodelling and identify a Golgi remodelling pathway that requires membrane-embedded receptors.
A proteomics analysis demonstrates that, during nutrient stress, mammalian cells prioritize degradation by autophagy of membrane proteins and identifies receptors that mediate this process at the Golgi and also have a role in Golgi remodelling during neuronal differentiation.</description><subject>14</subject><subject>14/1</subject><subject>631/1647/2067</subject><subject>631/378/368</subject><subject>631/80/39/2346</subject><subject>631/80/642/1525</subject><subject>82</subject><subject>82/58</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy - physiology</subject><subject>Autophagy-Related Protein 8 Family - metabolism</subject><subject>Biosynthesis</subject><subject>Cargo</subject><subject>Cell surface receptors</subject><subject>Census</subject><subject>Censuses</subject><subject>Endoplasmic Reticulum</subject><subject>Golgi apparatus</subject><subject>Golgi Apparatus - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Kinases</subject><subject>Lysosomes</subject><subject>Macromolecules</subject><subject>Mammalian cells</subject><subject>Mammals - metabolism</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>multidisciplinary</subject><subject>Neural stem cells</subject><subject>Nutrients</subject><subject>Nutrients - metabolism</subject><subject>Ontology</subject><subject>Organelles</subject><subject>Phagosomes</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Proteome - metabolism</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Receptors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kTtPxDAQhC0EguPxByhQJBqawDpObKdC6MRTSFBAbTnO5ghK4mAnJ_HvcTjeBZWL-Xa8s0PIPoVjCkye-JRmkseQsBg4z0TM18iMpoLHKZdincwAEhmDZHyLbHv_DAAZFekm2WJCZELm-Yzc3Ds7oG0xMtj50Udjb7uoGwdXYzdEfnDofeRwibrx0aVtFnX_pBevUYtt4XSHQTPYD9b5XbJRBQj3Pt4d8nhx_jC_im_vLq_nZ7exSUU2xKnQpqKCsSLjqdFaG5nlBaVgisIIXRoqKqTSoGalzk1aclPlFHiZlSgrztkOOV359mPRYhn2HpxuVO_qVrtXZXWtfitd_aQWdqmCSQKQTw5HHw7OvozoB9XW3mDThDx29CqRAsIdwxUDevgHfbaj60K-QEkOQjI6UcmKMs5677D62oaCmrpSq65U6Eq9d6WmLQ5-5vga-SwnAGwF-CB1C3Tff_9j-wZuFqJn</recordid><startdate>20231102</startdate><enddate>20231102</enddate><creator>Hickey, Kelsey L.</creator><creator>Swarup, Sharan</creator><creator>Smith, Ian R.</creator><creator>Paoli, Julia C.</creator><creator>Miguel Whelan, Enya</creator><creator>Paulo, Joao A.</creator><creator>Harper, J. Wade</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0226-5582</orcidid><orcidid>https://orcid.org/0000-0002-4291-413X</orcidid><orcidid>https://orcid.org/0000-0002-6944-7236</orcidid><orcidid>https://orcid.org/0000-0001-8266-1766</orcidid></search><sort><creationdate>20231102</creationdate><title>Proteome census upon nutrient stress reveals Golgiphagy membrane receptors</title><author>Hickey, Kelsey L. ; Swarup, Sharan ; Smith, Ian R. ; Paoli, Julia C. ; Miguel Whelan, Enya ; Paulo, Joao A. ; Harper, J. Wade</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-47acf1733b564caaac859b110cbbc7adc17fe18cea3da9c4d6cf9106d5de8f663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14</topic><topic>14/1</topic><topic>631/1647/2067</topic><topic>631/378/368</topic><topic>631/80/39/2346</topic><topic>631/80/642/1525</topic><topic>82</topic><topic>82/58</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy - physiology</topic><topic>Autophagy-Related Protein 8 Family - metabolism</topic><topic>Biosynthesis</topic><topic>Cargo</topic><topic>Cell surface receptors</topic><topic>Census</topic><topic>Censuses</topic><topic>Endoplasmic Reticulum</topic><topic>Golgi apparatus</topic><topic>Golgi Apparatus - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Kinases</topic><topic>Lysosomes</topic><topic>Macromolecules</topic><topic>Mammalian cells</topic><topic>Mammals - metabolism</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>multidisciplinary</topic><topic>Neural stem cells</topic><topic>Nutrients</topic><topic>Nutrients - metabolism</topic><topic>Ontology</topic><topic>Organelles</topic><topic>Phagosomes</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Proteome - metabolism</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Receptors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hickey, Kelsey L.</creatorcontrib><creatorcontrib>Swarup, Sharan</creatorcontrib><creatorcontrib>Smith, Ian R.</creatorcontrib><creatorcontrib>Paoli, Julia C.</creatorcontrib><creatorcontrib>Miguel Whelan, Enya</creatorcontrib><creatorcontrib>Paulo, Joao A.</creatorcontrib><creatorcontrib>Harper, J. Wade</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hickey, Kelsey L.</au><au>Swarup, Sharan</au><au>Smith, Ian R.</au><au>Paoli, Julia C.</au><au>Miguel Whelan, Enya</au><au>Paulo, Joao A.</au><au>Harper, J. Wade</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteome census upon nutrient stress reveals Golgiphagy membrane receptors</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-11-02</date><risdate>2023</risdate><volume>623</volume><issue>7985</issue><spage>167</spage><epage>174</epage><pages>167-174</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>During nutrient stress, macroautophagy degrades cellular macromolecules, thereby providing biosynthetic building blocks while simultaneously remodelling the proteome
1
,
2
. Although the machinery responsible for initiation of macroautophagy has been well characterized
3
,
4
, our understanding of the extent to which individual proteins, protein complexes and organelles are selected for autophagic degradation, and the underlying targeting mechanisms, is limited. Here we use orthogonal proteomic strategies to provide a spatial proteome census of autophagic cargo during nutrient stress in mammalian cells. We find that macroautophagy has selectivity for recycling membrane-bound organelles (principally Golgi and endoplasmic reticulum). Through autophagic cargo prioritization, we identify a complex of membrane-embedded proteins, YIPF3 and YIPF4, as receptors for Golgiphagy. During nutrient stress, YIPF3 and YIPF4 interact with ATG8 proteins through LIR motifs and are mobilized into autophagosomes that traffic to lysosomes in a process that requires the canonical autophagic machinery. Cells lacking YIPF3 or YIPF4 are selectively defective in elimination of a specific cohort of Golgi membrane proteins during nutrient stress. Moreover, YIPF3 and YIPF4 play an analogous role in Golgi remodelling during programmed conversion of stem cells to the neuronal lineage in vitro. Collectively, the findings of this study reveal prioritization of membrane protein cargo during nutrient-stress-dependent proteome remodelling and identify a Golgi remodelling pathway that requires membrane-embedded receptors.
A proteomics analysis demonstrates that, during nutrient stress, mammalian cells prioritize degradation by autophagy of membrane proteins and identifies receptors that mediate this process at the Golgi and also have a role in Golgi remodelling during neuronal differentiation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37757899</pmid><doi>10.1038/s41586-023-06657-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0226-5582</orcidid><orcidid>https://orcid.org/0000-0002-4291-413X</orcidid><orcidid>https://orcid.org/0000-0002-6944-7236</orcidid><orcidid>https://orcid.org/0000-0001-8266-1766</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2023-11, Vol.623 (7985), p.167-174 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10620096 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 14 14/1 631/1647/2067 631/378/368 631/80/39/2346 631/80/642/1525 82 82/58 Amino acids Animals Autophagy Autophagy - physiology Autophagy-Related Protein 8 Family - metabolism Biosynthesis Cargo Cell surface receptors Census Censuses Endoplasmic Reticulum Golgi apparatus Golgi Apparatus - metabolism Humanities and Social Sciences Kinases Lysosomes Macromolecules Mammalian cells Mammals - metabolism Membrane proteins Membrane Proteins - metabolism Membranes multidisciplinary Neural stem cells Nutrients Nutrients - metabolism Ontology Organelles Phagosomes Protein transport Proteins Proteome - metabolism Proteomes Proteomics Receptors Science Science (multidisciplinary) Stem cells |
title | Proteome census upon nutrient stress reveals Golgiphagy membrane receptors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteome%20census%20upon%20nutrient%20stress%20reveals%20Golgiphagy%20membrane%20receptors&rft.jtitle=Nature%20(London)&rft.au=Hickey,%20Kelsey%20L.&rft.date=2023-11-02&rft.volume=623&rft.issue=7985&rft.spage=167&rft.epage=174&rft.pages=167-174&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-06657-6&rft_dat=%3Cproquest_pubme%3E2886078318%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886078318&rft_id=info:pmid/37757899&rfr_iscdi=true |