Identification of a protective microglial state mediated by miR-155 and interferon-γ signaling in a mouse model of Alzheimer’s disease

Microglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD. However, its role...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2023-07, Vol.26 (7), p.1196-1207
Hauptverfasser: Yin, Zhuoran, Herron, Shawn, Silveira, Sebastian, Kleemann, Kilian, Gauthier, Christian, Mallah, Dania, Cheng, Yiran, Margeta, Milica A., Pitts, Kristen M., Barry, Jen-Li, Subramanian, Ayshwarya, Shorey, Hannah, Brandao, Wesley, Durao, Ana, Delpech, Jean-Christophe, Madore, Charlotte, Jedrychowski, Mark, Ajay, Amrendra K., Murugaiyan, Gopal, Hersh, Samuel W., Ikezu, Seiko, Ikezu, Tsuneya, Butovsky, Oleg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1207
container_issue 7
container_start_page 1196
container_title Nature neuroscience
container_volume 26
creator Yin, Zhuoran
Herron, Shawn
Silveira, Sebastian
Kleemann, Kilian
Gauthier, Christian
Mallah, Dania
Cheng, Yiran
Margeta, Milica A.
Pitts, Kristen M.
Barry, Jen-Li
Subramanian, Ayshwarya
Shorey, Hannah
Brandao, Wesley
Durao, Ana
Delpech, Jean-Christophe
Madore, Charlotte
Jedrychowski, Mark
Ajay, Amrendra K.
Murugaiyan, Gopal
Hersh, Samuel W.
Ikezu, Seiko
Ikezu, Tsuneya
Butovsky, Oleg
description Microglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD. However, its role in Alzheimer’s disease (AD) pathogenesis remains unclear. Here, we report that microglial deletion of miR-155 induces a pre-MGnD activation state via interferon-γ (IFN-γ) signaling, and blocking IFN-γ signaling attenuates MGnD induction and microglial phagocytosis. Single-cell RNA-sequencing analysis of microglia from an AD mouse model identifies Stat1 and Clec2d as pre-MGnD markers. This phenotypic transition enhances amyloid plaque compaction, reduces dystrophic neurites, attenuates plaque-associated synaptic degradation and improves cognition. Our study demonstrates a miR-155-mediated regulatory mechanism of MGnD and the beneficial role of IFN-γ-responsive pre-MGnD in restricting neurodegenerative pathology and preserving cognitive function in an AD mouse model, highlighting miR-155 and IFN-γ as potential therapeutic targets for AD. Yin et al. identify miR-155–IFN-γ signaling that regulates a protective microglial subset in a mouse model of Alzheimer’s disease. These microglia enhance plaque compaction, reduce dystrophic neurites and synaptic degradation, and improve cognition.
doi_str_mv 10.1038/s41593-023-01355-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10619638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833398324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-90eb9a95319f9ddbecbdaf01dc47547ee94908c09e861c7142bc1b9b00a76dd3</originalsourceid><addsrcrecordid>eNp9Us1u1DAQjhCIlsILcECRuMAh4P_EJ7SqCq20EhLq3XLsSdZVNl7s7ErbE1cegefoe_AQPAmzpBTogYM11sz3feMZf0XxnJI3lPDmbRZUal4RhodyKav9g-KYSqEqWjP1EO9E15ViUh0VT3K-IoTUstGPiyNeM005V8fF1wsP4xS64OwU4ljGrrTlJsUJ3BR2UK6DS7Efgh3KPNkJE-ADRl-2eyx-qqiUpR19GcYJUgcpjtX3mzKHfrRDGHvMo-A6bjNSo4fh0GExXK8grCH9-PItlz5ksBmeFo86O2R4dhtPisv3Z5en59Xy44eL08WyckLJqdIEWm215FR32vsWXOttR6h3opaiBtBCk8YRDY2irqaCtY62uiXE1sp7flK8m2U32xZncTh9soPZpLC2aW-iDebfyhhWpo87Q4miWvEGFV7PCqt7vPPF0hxyRDBWUyV2FLGvbrul-HkLeTLrkB0Mgx0Bd2JYw4RqFP4LQl_eg17FbcItHlCcc91wJhDFZhR-S84JursXUGIOrjCzKwy6wvxyhdkj6cXfM99RftsAAXwGZCyNPaQ_vf8j-xP3jsaY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833398324</pqid></control><display><type>article</type><title>Identification of a protective microglial state mediated by miR-155 and interferon-γ signaling in a mouse model of Alzheimer’s disease</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Yin, Zhuoran ; Herron, Shawn ; Silveira, Sebastian ; Kleemann, Kilian ; Gauthier, Christian ; Mallah, Dania ; Cheng, Yiran ; Margeta, Milica A. ; Pitts, Kristen M. ; Barry, Jen-Li ; Subramanian, Ayshwarya ; Shorey, Hannah ; Brandao, Wesley ; Durao, Ana ; Delpech, Jean-Christophe ; Madore, Charlotte ; Jedrychowski, Mark ; Ajay, Amrendra K. ; Murugaiyan, Gopal ; Hersh, Samuel W. ; Ikezu, Seiko ; Ikezu, Tsuneya ; Butovsky, Oleg</creator><creatorcontrib>Yin, Zhuoran ; Herron, Shawn ; Silveira, Sebastian ; Kleemann, Kilian ; Gauthier, Christian ; Mallah, Dania ; Cheng, Yiran ; Margeta, Milica A. ; Pitts, Kristen M. ; Barry, Jen-Li ; Subramanian, Ayshwarya ; Shorey, Hannah ; Brandao, Wesley ; Durao, Ana ; Delpech, Jean-Christophe ; Madore, Charlotte ; Jedrychowski, Mark ; Ajay, Amrendra K. ; Murugaiyan, Gopal ; Hersh, Samuel W. ; Ikezu, Seiko ; Ikezu, Tsuneya ; Butovsky, Oleg</creatorcontrib><description>Microglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD. However, its role in Alzheimer’s disease (AD) pathogenesis remains unclear. Here, we report that microglial deletion of miR-155 induces a pre-MGnD activation state via interferon-γ (IFN-γ) signaling, and blocking IFN-γ signaling attenuates MGnD induction and microglial phagocytosis. Single-cell RNA-sequencing analysis of microglia from an AD mouse model identifies Stat1 and Clec2d as pre-MGnD markers. This phenotypic transition enhances amyloid plaque compaction, reduces dystrophic neurites, attenuates plaque-associated synaptic degradation and improves cognition. Our study demonstrates a miR-155-mediated regulatory mechanism of MGnD and the beneficial role of IFN-γ-responsive pre-MGnD in restricting neurodegenerative pathology and preserving cognitive function in an AD mouse model, highlighting miR-155 and IFN-γ as potential therapeutic targets for AD. Yin et al. identify miR-155–IFN-γ signaling that regulates a protective microglial subset in a mouse model of Alzheimer’s disease. These microglia enhance plaque compaction, reduce dystrophic neurites and synaptic degradation, and improve cognition.</description><identifier>ISSN: 1097-6256</identifier><identifier>ISSN: 1546-1726</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-023-01355-y</identifier><identifier>PMID: 37291336</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/106 ; 13/2 ; 13/31 ; 13/51 ; 14/1 ; 14/19 ; 38/39 ; 45/77 ; 45/90 ; 45/91 ; 631/250/371 ; 631/378/371 ; 631/378/87 ; 64/60 ; 692/699/375/365/1283 ; 82/58 ; Alzheimer Disease - metabolism ; Alzheimer's disease ; Amyloid ; Amyloid beta-Peptides - metabolism ; Animal Genetics and Genomics ; Animals ; Axons ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Cognition ; Cognitive ability ; Compaction ; Degradation ; Disease Models, Animal ; Gene sequencing ; Homeostasis ; Immune system ; Interferon ; Interferon-gamma - metabolism ; Life Sciences ; Mice ; Mice, Transgenic ; Microglia ; Microglia - metabolism ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Neurobiology ; Neurodegenerative diseases ; Neurons and Cognition ; Neurosciences ; Pathogenesis ; Phagocytosis ; Phenotypes ; Plaque, Amyloid - metabolism ; Regulatory mechanisms (biology) ; Sequence analysis ; Signal Transduction - genetics ; Stat1 protein ; Therapeutic targets ; γ-Interferon</subject><ispartof>Nature neuroscience, 2023-07, Vol.26 (7), p.1196-1207</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-90eb9a95319f9ddbecbdaf01dc47547ee94908c09e861c7142bc1b9b00a76dd3</citedby><cites>FETCH-LOGICAL-c465t-90eb9a95319f9ddbecbdaf01dc47547ee94908c09e861c7142bc1b9b00a76dd3</cites><orcidid>0000-0003-2790-5726 ; 0000-0003-0186-8867 ; 0000-0002-2753-6804 ; 0000-0002-3979-8596 ; 0000-0001-7049-0883 ; 0000-0001-5589-2024 ; 0000-0002-4134-7612 ; 0000-0002-0704-6496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-023-01355-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-023-01355-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37291336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04227164$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Zhuoran</creatorcontrib><creatorcontrib>Herron, Shawn</creatorcontrib><creatorcontrib>Silveira, Sebastian</creatorcontrib><creatorcontrib>Kleemann, Kilian</creatorcontrib><creatorcontrib>Gauthier, Christian</creatorcontrib><creatorcontrib>Mallah, Dania</creatorcontrib><creatorcontrib>Cheng, Yiran</creatorcontrib><creatorcontrib>Margeta, Milica A.</creatorcontrib><creatorcontrib>Pitts, Kristen M.</creatorcontrib><creatorcontrib>Barry, Jen-Li</creatorcontrib><creatorcontrib>Subramanian, Ayshwarya</creatorcontrib><creatorcontrib>Shorey, Hannah</creatorcontrib><creatorcontrib>Brandao, Wesley</creatorcontrib><creatorcontrib>Durao, Ana</creatorcontrib><creatorcontrib>Delpech, Jean-Christophe</creatorcontrib><creatorcontrib>Madore, Charlotte</creatorcontrib><creatorcontrib>Jedrychowski, Mark</creatorcontrib><creatorcontrib>Ajay, Amrendra K.</creatorcontrib><creatorcontrib>Murugaiyan, Gopal</creatorcontrib><creatorcontrib>Hersh, Samuel W.</creatorcontrib><creatorcontrib>Ikezu, Seiko</creatorcontrib><creatorcontrib>Ikezu, Tsuneya</creatorcontrib><creatorcontrib>Butovsky, Oleg</creatorcontrib><title>Identification of a protective microglial state mediated by miR-155 and interferon-γ signaling in a mouse model of Alzheimer’s disease</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Microglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD. However, its role in Alzheimer’s disease (AD) pathogenesis remains unclear. Here, we report that microglial deletion of miR-155 induces a pre-MGnD activation state via interferon-γ (IFN-γ) signaling, and blocking IFN-γ signaling attenuates MGnD induction and microglial phagocytosis. Single-cell RNA-sequencing analysis of microglia from an AD mouse model identifies Stat1 and Clec2d as pre-MGnD markers. This phenotypic transition enhances amyloid plaque compaction, reduces dystrophic neurites, attenuates plaque-associated synaptic degradation and improves cognition. Our study demonstrates a miR-155-mediated regulatory mechanism of MGnD and the beneficial role of IFN-γ-responsive pre-MGnD in restricting neurodegenerative pathology and preserving cognitive function in an AD mouse model, highlighting miR-155 and IFN-γ as potential therapeutic targets for AD. Yin et al. identify miR-155–IFN-γ signaling that regulates a protective microglial subset in a mouse model of Alzheimer’s disease. These microglia enhance plaque compaction, reduce dystrophic neurites and synaptic degradation, and improve cognition.</description><subject>13/106</subject><subject>13/2</subject><subject>13/31</subject><subject>13/51</subject><subject>14/1</subject><subject>14/19</subject><subject>38/39</subject><subject>45/77</subject><subject>45/90</subject><subject>45/91</subject><subject>631/250/371</subject><subject>631/378/371</subject><subject>631/378/87</subject><subject>64/60</subject><subject>692/699/375/365/1283</subject><subject>82/58</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer's disease</subject><subject>Amyloid</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Axons</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cognition</subject><subject>Cognitive ability</subject><subject>Compaction</subject><subject>Degradation</subject><subject>Disease Models, Animal</subject><subject>Gene sequencing</subject><subject>Homeostasis</subject><subject>Immune system</subject><subject>Interferon</subject><subject>Interferon-gamma - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microglia</subject><subject>Microglia - metabolism</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Neurobiology</subject><subject>Neurodegenerative diseases</subject><subject>Neurons and Cognition</subject><subject>Neurosciences</subject><subject>Pathogenesis</subject><subject>Phagocytosis</subject><subject>Phenotypes</subject><subject>Plaque, Amyloid - metabolism</subject><subject>Regulatory mechanisms (biology)</subject><subject>Sequence analysis</subject><subject>Signal Transduction - genetics</subject><subject>Stat1 protein</subject><subject>Therapeutic targets</subject><subject>γ-Interferon</subject><issn>1097-6256</issn><issn>1546-1726</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9Us1u1DAQjhCIlsILcECRuMAh4P_EJ7SqCq20EhLq3XLsSdZVNl7s7ErbE1cegefoe_AQPAmzpBTogYM11sz3feMZf0XxnJI3lPDmbRZUal4RhodyKav9g-KYSqEqWjP1EO9E15ViUh0VT3K-IoTUstGPiyNeM005V8fF1wsP4xS64OwU4ljGrrTlJsUJ3BR2UK6DS7Efgh3KPNkJE-ADRl-2eyx-qqiUpR19GcYJUgcpjtX3mzKHfrRDGHvMo-A6bjNSo4fh0GExXK8grCH9-PItlz5ksBmeFo86O2R4dhtPisv3Z5en59Xy44eL08WyckLJqdIEWm215FR32vsWXOttR6h3opaiBtBCk8YRDY2irqaCtY62uiXE1sp7flK8m2U32xZncTh9soPZpLC2aW-iDebfyhhWpo87Q4miWvEGFV7PCqt7vPPF0hxyRDBWUyV2FLGvbrul-HkLeTLrkB0Mgx0Bd2JYw4RqFP4LQl_eg17FbcItHlCcc91wJhDFZhR-S84JursXUGIOrjCzKwy6wvxyhdkj6cXfM99RftsAAXwGZCyNPaQ_vf8j-xP3jsaY</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Yin, Zhuoran</creator><creator>Herron, Shawn</creator><creator>Silveira, Sebastian</creator><creator>Kleemann, Kilian</creator><creator>Gauthier, Christian</creator><creator>Mallah, Dania</creator><creator>Cheng, Yiran</creator><creator>Margeta, Milica A.</creator><creator>Pitts, Kristen M.</creator><creator>Barry, Jen-Li</creator><creator>Subramanian, Ayshwarya</creator><creator>Shorey, Hannah</creator><creator>Brandao, Wesley</creator><creator>Durao, Ana</creator><creator>Delpech, Jean-Christophe</creator><creator>Madore, Charlotte</creator><creator>Jedrychowski, Mark</creator><creator>Ajay, Amrendra K.</creator><creator>Murugaiyan, Gopal</creator><creator>Hersh, Samuel W.</creator><creator>Ikezu, Seiko</creator><creator>Ikezu, Tsuneya</creator><creator>Butovsky, Oleg</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2790-5726</orcidid><orcidid>https://orcid.org/0000-0003-0186-8867</orcidid><orcidid>https://orcid.org/0000-0002-2753-6804</orcidid><orcidid>https://orcid.org/0000-0002-3979-8596</orcidid><orcidid>https://orcid.org/0000-0001-7049-0883</orcidid><orcidid>https://orcid.org/0000-0001-5589-2024</orcidid><orcidid>https://orcid.org/0000-0002-4134-7612</orcidid><orcidid>https://orcid.org/0000-0002-0704-6496</orcidid></search><sort><creationdate>20230701</creationdate><title>Identification of a protective microglial state mediated by miR-155 and interferon-γ signaling in a mouse model of Alzheimer’s disease</title><author>Yin, Zhuoran ; Herron, Shawn ; Silveira, Sebastian ; Kleemann, Kilian ; Gauthier, Christian ; Mallah, Dania ; Cheng, Yiran ; Margeta, Milica A. ; Pitts, Kristen M. ; Barry, Jen-Li ; Subramanian, Ayshwarya ; Shorey, Hannah ; Brandao, Wesley ; Durao, Ana ; Delpech, Jean-Christophe ; Madore, Charlotte ; Jedrychowski, Mark ; Ajay, Amrendra K. ; Murugaiyan, Gopal ; Hersh, Samuel W. ; Ikezu, Seiko ; Ikezu, Tsuneya ; Butovsky, Oleg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-90eb9a95319f9ddbecbdaf01dc47547ee94908c09e861c7142bc1b9b00a76dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>13/106</topic><topic>13/2</topic><topic>13/31</topic><topic>13/51</topic><topic>14/1</topic><topic>14/19</topic><topic>38/39</topic><topic>45/77</topic><topic>45/90</topic><topic>45/91</topic><topic>631/250/371</topic><topic>631/378/371</topic><topic>631/378/87</topic><topic>64/60</topic><topic>692/699/375/365/1283</topic><topic>82/58</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer's disease</topic><topic>Amyloid</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Axons</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cognition</topic><topic>Cognitive ability</topic><topic>Compaction</topic><topic>Degradation</topic><topic>Disease Models, Animal</topic><topic>Gene sequencing</topic><topic>Homeostasis</topic><topic>Immune system</topic><topic>Interferon</topic><topic>Interferon-gamma - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microglia</topic><topic>Microglia - metabolism</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Neurobiology</topic><topic>Neurodegenerative diseases</topic><topic>Neurons and Cognition</topic><topic>Neurosciences</topic><topic>Pathogenesis</topic><topic>Phagocytosis</topic><topic>Phenotypes</topic><topic>Plaque, Amyloid - metabolism</topic><topic>Regulatory mechanisms (biology)</topic><topic>Sequence analysis</topic><topic>Signal Transduction - genetics</topic><topic>Stat1 protein</topic><topic>Therapeutic targets</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Zhuoran</creatorcontrib><creatorcontrib>Herron, Shawn</creatorcontrib><creatorcontrib>Silveira, Sebastian</creatorcontrib><creatorcontrib>Kleemann, Kilian</creatorcontrib><creatorcontrib>Gauthier, Christian</creatorcontrib><creatorcontrib>Mallah, Dania</creatorcontrib><creatorcontrib>Cheng, Yiran</creatorcontrib><creatorcontrib>Margeta, Milica A.</creatorcontrib><creatorcontrib>Pitts, Kristen M.</creatorcontrib><creatorcontrib>Barry, Jen-Li</creatorcontrib><creatorcontrib>Subramanian, Ayshwarya</creatorcontrib><creatorcontrib>Shorey, Hannah</creatorcontrib><creatorcontrib>Brandao, Wesley</creatorcontrib><creatorcontrib>Durao, Ana</creatorcontrib><creatorcontrib>Delpech, Jean-Christophe</creatorcontrib><creatorcontrib>Madore, Charlotte</creatorcontrib><creatorcontrib>Jedrychowski, Mark</creatorcontrib><creatorcontrib>Ajay, Amrendra K.</creatorcontrib><creatorcontrib>Murugaiyan, Gopal</creatorcontrib><creatorcontrib>Hersh, Samuel W.</creatorcontrib><creatorcontrib>Ikezu, Seiko</creatorcontrib><creatorcontrib>Ikezu, Tsuneya</creatorcontrib><creatorcontrib>Butovsky, Oleg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Zhuoran</au><au>Herron, Shawn</au><au>Silveira, Sebastian</au><au>Kleemann, Kilian</au><au>Gauthier, Christian</au><au>Mallah, Dania</au><au>Cheng, Yiran</au><au>Margeta, Milica A.</au><au>Pitts, Kristen M.</au><au>Barry, Jen-Li</au><au>Subramanian, Ayshwarya</au><au>Shorey, Hannah</au><au>Brandao, Wesley</au><au>Durao, Ana</au><au>Delpech, Jean-Christophe</au><au>Madore, Charlotte</au><au>Jedrychowski, Mark</au><au>Ajay, Amrendra K.</au><au>Murugaiyan, Gopal</au><au>Hersh, Samuel W.</au><au>Ikezu, Seiko</au><au>Ikezu, Tsuneya</au><au>Butovsky, Oleg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a protective microglial state mediated by miR-155 and interferon-γ signaling in a mouse model of Alzheimer’s disease</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>26</volume><issue>7</issue><spage>1196</spage><epage>1207</epage><pages>1196-1207</pages><issn>1097-6256</issn><issn>1546-1726</issn><eissn>1546-1726</eissn><abstract>Microglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD. However, its role in Alzheimer’s disease (AD) pathogenesis remains unclear. Here, we report that microglial deletion of miR-155 induces a pre-MGnD activation state via interferon-γ (IFN-γ) signaling, and blocking IFN-γ signaling attenuates MGnD induction and microglial phagocytosis. Single-cell RNA-sequencing analysis of microglia from an AD mouse model identifies Stat1 and Clec2d as pre-MGnD markers. This phenotypic transition enhances amyloid plaque compaction, reduces dystrophic neurites, attenuates plaque-associated synaptic degradation and improves cognition. Our study demonstrates a miR-155-mediated regulatory mechanism of MGnD and the beneficial role of IFN-γ-responsive pre-MGnD in restricting neurodegenerative pathology and preserving cognitive function in an AD mouse model, highlighting miR-155 and IFN-γ as potential therapeutic targets for AD. Yin et al. identify miR-155–IFN-γ signaling that regulates a protective microglial subset in a mouse model of Alzheimer’s disease. These microglia enhance plaque compaction, reduce dystrophic neurites and synaptic degradation, and improve cognition.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37291336</pmid><doi>10.1038/s41593-023-01355-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2790-5726</orcidid><orcidid>https://orcid.org/0000-0003-0186-8867</orcidid><orcidid>https://orcid.org/0000-0002-2753-6804</orcidid><orcidid>https://orcid.org/0000-0002-3979-8596</orcidid><orcidid>https://orcid.org/0000-0001-7049-0883</orcidid><orcidid>https://orcid.org/0000-0001-5589-2024</orcidid><orcidid>https://orcid.org/0000-0002-4134-7612</orcidid><orcidid>https://orcid.org/0000-0002-0704-6496</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2023-07, Vol.26 (7), p.1196-1207
issn 1097-6256
1546-1726
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10619638
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 13/106
13/2
13/31
13/51
14/1
14/19
38/39
45/77
45/90
45/91
631/250/371
631/378/371
631/378/87
64/60
692/699/375/365/1283
82/58
Alzheimer Disease - metabolism
Alzheimer's disease
Amyloid
Amyloid beta-Peptides - metabolism
Animal Genetics and Genomics
Animals
Axons
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Cognition
Cognitive ability
Compaction
Degradation
Disease Models, Animal
Gene sequencing
Homeostasis
Immune system
Interferon
Interferon-gamma - metabolism
Life Sciences
Mice
Mice, Transgenic
Microglia
Microglia - metabolism
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Neurobiology
Neurodegenerative diseases
Neurons and Cognition
Neurosciences
Pathogenesis
Phagocytosis
Phenotypes
Plaque, Amyloid - metabolism
Regulatory mechanisms (biology)
Sequence analysis
Signal Transduction - genetics
Stat1 protein
Therapeutic targets
γ-Interferon
title Identification of a protective microglial state mediated by miR-155 and interferon-γ signaling in a mouse model of Alzheimer’s disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20protective%20microglial%20state%20mediated%20by%20miR-155%20and%20interferon-%CE%B3%20signaling%20in%20a%20mouse%20model%20of%20Alzheimer%E2%80%99s%20disease&rft.jtitle=Nature%20neuroscience&rft.au=Yin,%20Zhuoran&rft.date=2023-07-01&rft.volume=26&rft.issue=7&rft.spage=1196&rft.epage=1207&rft.pages=1196-1207&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-023-01355-y&rft_dat=%3Cproquest_pubme%3E2833398324%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833398324&rft_id=info:pmid/37291336&rfr_iscdi=true