Gemcitabine-loaded synthetic high-density lipoprotein preferentially eradicates hepatic monocyte-derived macrophages in mouse liver with colorectal cancer metastases
Liver metastasis of colorectal cancer (CRC) is the critical cause of CRC-related death due to its unique immunosuppressive microenvironment. In this study we generated a gemcitabine-loaded synthetic high-density lipoprotein (G-sHDL) to reverse immunosuppression in livers with CRC metastases. After i...
Gespeichert in:
Veröffentlicht in: | Acta pharmacologica Sinica 2023-11, Vol.44 (11), p.2331-2341 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Liver metastasis of colorectal cancer (CRC) is the critical cause of CRC-related death due to its unique immunosuppressive microenvironment. In this study we generated a gemcitabine-loaded synthetic high-density lipoprotein (G-sHDL) to reverse immunosuppression in livers with CRC metastases. After intravenous injection, sHDL targeted hepatic monocyte-derived alternatively activated macrophages (Mono-M2) in the livers of mice bearing both subcutaneous tumors and liver metastases. The G-sHDL preferentially eradicated Mono-M2 in the livers with CRC metastases, which consequently prevented Mono-M2-mediated killing of tumor antigen-specific CD8
+
T cells in the livers and thus improved the densities of tumor antigen-specific CD8
+
T cells in the blood, tumor-draining lymph nodes and subcutaneous tumors of the treated mice. While reversing the immunosuppressive microenvironment, G-sHDL also induced immunogenic cell death of cancer cells, promoted maturation of dendritic cells, and increased tumor infiltration and activity of CD8
+
T cells. Collectively, G-sHDL inhibited the growth of both subcutaneous tumors and liver metastases, and prolonged the survival of animals, which could be further improved when used in conjunction with anti-PD-L1 antibody. This platform can be a generalizable platform to modulate immune microenvironment of diseased livers. |
---|---|
ISSN: | 1671-4083 1745-7254 1745-7254 |
DOI: | 10.1038/s41401-023-01110-w |