mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development
Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulatin...
Gespeichert in:
Veröffentlicht in: | Acta pharmacologica Sinica 2023-11, Vol.44 (11), p.2243-2252 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2252 |
---|---|
container_issue | 11 |
container_start_page | 2243 |
container_title | Acta pharmacologica Sinica |
container_volume | 44 |
creator | Deng, Ya-fei Wu, Shu-ting Peng, Hong-yan Tian, Lei Li, Ya-na Yang, Yao Meng, Meng Huang, Lan-lan Xiong, Pei-wen Li, Song-yang Yang, Qing-lan Wang, Li-li Li, Xiao-yao Li, Li-ping Lu, Xiu-lan Li, Xiao-hui Wei, Yan-ling Xiao, Zheng-hui Yu, Jian-hua Deng, You-cai |
description | Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulating ILC3 homeostasis remain unknown. In this study, we found that mTORC1 but not mTORC2 was critical in ILC3 development, IL-22 production, and ILC3-mediated intestinal homeostasis. Single-cell RNA sequencing revealed that mTORC1 deficiency led to disruption of ILC3 heterogeneity, showing an increase in differentiation into ILC1-like phenotypes. Mechanistically, mTORC1 deficiency decreased the expression of NFIL3, which is a critical transcription factor responsible for ILC3 development. The activities of both mTORC1 and mTORC2 were increased in wild-type ILC3s after activation by IL-23, whereas inhibition of mTORC1 by
Raptor
deletion or rapamycin treatment resulted in increased mTORC2 activity. Previous studies have demonstrated that S6K, the main downstream target of mTORC1, can directly phosphorylate Rictor to dampen mTORC2 activity. Our data found that inhibition of mTORC1 activity by rapamycin reduced Rictor phosphorylation in ILC3s. Reversing the increased mTORC2 activity
via
heterozygous or homozygous knockout of
Rictor
in
Raptor
-deleted ILC3s resulted in severe ILC3 loss and complete susceptibility to intestinal infection in mice with mTORC1 deficiency (100% mortality). Thus, mTORC1 acts as a rheostat of ILC3 heterogeneity, and mTORC2 protects ILC3s from severe loss of cells and immune activity against intestinal infection when mTORC1 activity is diminished. |
doi_str_mv | 10.1038/s41401-023-01120-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10618277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884496849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-3543d3b9fb0e0719c12e68c871376bf83ddc87b3a82424bece95891afd9464573</originalsourceid><addsrcrecordid>eNp9kU1rVTEQhoNYbK3-ARdywI2b2Ewm5yRZiVz8KFwoSN24CTk5c66p58vk3kL_vbm9tdouhEAymWfemeFl7BWIdyDQnGUFSgAXErkAkIKbJ-wEtKq5lrV6Wt6NBq6EwWP2POcrIVAi2GfsGLUSWgs8Yd_Hy4uvK1n5sM2VL6fa-C39JFooVf2cqts8VB31MUSawg0fqYuF6ao4Lj6mkaZSGqfqfL3Cwl3TMC_7zxfsqPdDppd39yn79unj5eoLX198Pl99WPOgELYca4UdtrZvBQkNNoCkxgSjAXXT9ga7rgQteiOVVC0FsrWx4PvOqkbVGk_Z-4PusmvLbKG0Tn5wS4qjTzdu9tE9zEzxh9vM1w5EA0bqvcLbO4U0_9pR3rox5kDD4Cead9lJg2htAVVB3zxCr-Zdmsp-hTJK2cYoWyh5oEKac07U308Dwu29cwfvXPHO3XrnTCl6_e8e9yV_zCoAHoBcUtOG0t_e_5H9DeBVo18</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884496849</pqid></control><display><type>article</type><title>mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Deng, Ya-fei ; Wu, Shu-ting ; Peng, Hong-yan ; Tian, Lei ; Li, Ya-na ; Yang, Yao ; Meng, Meng ; Huang, Lan-lan ; Xiong, Pei-wen ; Li, Song-yang ; Yang, Qing-lan ; Wang, Li-li ; Li, Xiao-yao ; Li, Li-ping ; Lu, Xiu-lan ; Li, Xiao-hui ; Wei, Yan-ling ; Xiao, Zheng-hui ; Yu, Jian-hua ; Deng, You-cai</creator><creatorcontrib>Deng, Ya-fei ; Wu, Shu-ting ; Peng, Hong-yan ; Tian, Lei ; Li, Ya-na ; Yang, Yao ; Meng, Meng ; Huang, Lan-lan ; Xiong, Pei-wen ; Li, Song-yang ; Yang, Qing-lan ; Wang, Li-li ; Li, Xiao-yao ; Li, Li-ping ; Lu, Xiu-lan ; Li, Xiao-hui ; Wei, Yan-ling ; Xiao, Zheng-hui ; Yu, Jian-hua ; Deng, You-cai</creatorcontrib><description>Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulating ILC3 homeostasis remain unknown. In this study, we found that mTORC1 but not mTORC2 was critical in ILC3 development, IL-22 production, and ILC3-mediated intestinal homeostasis. Single-cell RNA sequencing revealed that mTORC1 deficiency led to disruption of ILC3 heterogeneity, showing an increase in differentiation into ILC1-like phenotypes. Mechanistically, mTORC1 deficiency decreased the expression of NFIL3, which is a critical transcription factor responsible for ILC3 development. The activities of both mTORC1 and mTORC2 were increased in wild-type ILC3s after activation by IL-23, whereas inhibition of mTORC1 by
Raptor
deletion or rapamycin treatment resulted in increased mTORC2 activity. Previous studies have demonstrated that S6K, the main downstream target of mTORC1, can directly phosphorylate Rictor to dampen mTORC2 activity. Our data found that inhibition of mTORC1 activity by rapamycin reduced Rictor phosphorylation in ILC3s. Reversing the increased mTORC2 activity
via
heterozygous or homozygous knockout of
Rictor
in
Raptor
-deleted ILC3s resulted in severe ILC3 loss and complete susceptibility to intestinal infection in mice with mTORC1 deficiency (100% mortality). Thus, mTORC1 acts as a rheostat of ILC3 heterogeneity, and mTORC2 protects ILC3s from severe loss of cells and immune activity against intestinal infection when mTORC1 activity is diminished.</description><identifier>ISSN: 1671-4083</identifier><identifier>ISSN: 1745-7254</identifier><identifier>EISSN: 1745-7254</identifier><identifier>DOI: 10.1038/s41401-023-01120-8</identifier><identifier>PMID: 37407703</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Animals ; Biomedical and Life Sciences ; Biomedicine ; Birds of prey ; Homeostasis ; Immunity, Innate ; Immunology ; Internal Medicine ; Intestine ; Lymphocytes ; Lymphoid cells ; Mammals - metabolism ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mechanistic Target of Rapamycin Complex 2 - metabolism ; Medical Microbiology ; Mice ; Pharmacology/Toxicology ; Phenotypes ; Phosphorylation ; Rapamycin ; Rapamycin-Insensitive Companion of mTOR Protein - metabolism ; Regulatory-Associated Protein of mTOR - genetics ; Sirolimus - pharmacology ; TOR protein ; Transcription Factors - metabolism ; Vaccine</subject><ispartof>Acta pharmacologica Sinica, 2023-11, Vol.44 (11), p.2243-2252</ispartof><rights>The Author(s), under exclusive licence to Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Chinese Pharmacological Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Chinese Pharmacological Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-3543d3b9fb0e0719c12e68c871376bf83ddc87b3a82424bece95891afd9464573</citedby><cites>FETCH-LOGICAL-c431t-3543d3b9fb0e0719c12e68c871376bf83ddc87b3a82424bece95891afd9464573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618277/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618277/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37407703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Ya-fei</creatorcontrib><creatorcontrib>Wu, Shu-ting</creatorcontrib><creatorcontrib>Peng, Hong-yan</creatorcontrib><creatorcontrib>Tian, Lei</creatorcontrib><creatorcontrib>Li, Ya-na</creatorcontrib><creatorcontrib>Yang, Yao</creatorcontrib><creatorcontrib>Meng, Meng</creatorcontrib><creatorcontrib>Huang, Lan-lan</creatorcontrib><creatorcontrib>Xiong, Pei-wen</creatorcontrib><creatorcontrib>Li, Song-yang</creatorcontrib><creatorcontrib>Yang, Qing-lan</creatorcontrib><creatorcontrib>Wang, Li-li</creatorcontrib><creatorcontrib>Li, Xiao-yao</creatorcontrib><creatorcontrib>Li, Li-ping</creatorcontrib><creatorcontrib>Lu, Xiu-lan</creatorcontrib><creatorcontrib>Li, Xiao-hui</creatorcontrib><creatorcontrib>Wei, Yan-ling</creatorcontrib><creatorcontrib>Xiao, Zheng-hui</creatorcontrib><creatorcontrib>Yu, Jian-hua</creatorcontrib><creatorcontrib>Deng, You-cai</creatorcontrib><title>mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development</title><title>Acta pharmacologica Sinica</title><addtitle>Acta Pharmacol Sin</addtitle><addtitle>Acta Pharmacol Sin</addtitle><description>Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulating ILC3 homeostasis remain unknown. In this study, we found that mTORC1 but not mTORC2 was critical in ILC3 development, IL-22 production, and ILC3-mediated intestinal homeostasis. Single-cell RNA sequencing revealed that mTORC1 deficiency led to disruption of ILC3 heterogeneity, showing an increase in differentiation into ILC1-like phenotypes. Mechanistically, mTORC1 deficiency decreased the expression of NFIL3, which is a critical transcription factor responsible for ILC3 development. The activities of both mTORC1 and mTORC2 were increased in wild-type ILC3s after activation by IL-23, whereas inhibition of mTORC1 by
Raptor
deletion or rapamycin treatment resulted in increased mTORC2 activity. Previous studies have demonstrated that S6K, the main downstream target of mTORC1, can directly phosphorylate Rictor to dampen mTORC2 activity. Our data found that inhibition of mTORC1 activity by rapamycin reduced Rictor phosphorylation in ILC3s. Reversing the increased mTORC2 activity
via
heterozygous or homozygous knockout of
Rictor
in
Raptor
-deleted ILC3s resulted in severe ILC3 loss and complete susceptibility to intestinal infection in mice with mTORC1 deficiency (100% mortality). Thus, mTORC1 acts as a rheostat of ILC3 heterogeneity, and mTORC2 protects ILC3s from severe loss of cells and immune activity against intestinal infection when mTORC1 activity is diminished.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Birds of prey</subject><subject>Homeostasis</subject><subject>Immunity, Innate</subject><subject>Immunology</subject><subject>Internal Medicine</subject><subject>Intestine</subject><subject>Lymphocytes</subject><subject>Lymphoid cells</subject><subject>Mammals - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 2 - metabolism</subject><subject>Medical Microbiology</subject><subject>Mice</subject><subject>Pharmacology/Toxicology</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Rapamycin</subject><subject>Rapamycin-Insensitive Companion of mTOR Protein - metabolism</subject><subject>Regulatory-Associated Protein of mTOR - genetics</subject><subject>Sirolimus - pharmacology</subject><subject>TOR protein</subject><subject>Transcription Factors - metabolism</subject><subject>Vaccine</subject><issn>1671-4083</issn><issn>1745-7254</issn><issn>1745-7254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1rVTEQhoNYbK3-ARdywI2b2Ewm5yRZiVz8KFwoSN24CTk5c66p58vk3kL_vbm9tdouhEAymWfemeFl7BWIdyDQnGUFSgAXErkAkIKbJ-wEtKq5lrV6Wt6NBq6EwWP2POcrIVAi2GfsGLUSWgs8Yd_Hy4uvK1n5sM2VL6fa-C39JFooVf2cqts8VB31MUSawg0fqYuF6ao4Lj6mkaZSGqfqfL3Cwl3TMC_7zxfsqPdDppd39yn79unj5eoLX198Pl99WPOgELYca4UdtrZvBQkNNoCkxgSjAXXT9ga7rgQteiOVVC0FsrWx4PvOqkbVGk_Z-4PusmvLbKG0Tn5wS4qjTzdu9tE9zEzxh9vM1w5EA0bqvcLbO4U0_9pR3rox5kDD4Cead9lJg2htAVVB3zxCr-Zdmsp-hTJK2cYoWyh5oEKac07U308Dwu29cwfvXPHO3XrnTCl6_e8e9yV_zCoAHoBcUtOG0t_e_5H9DeBVo18</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Deng, Ya-fei</creator><creator>Wu, Shu-ting</creator><creator>Peng, Hong-yan</creator><creator>Tian, Lei</creator><creator>Li, Ya-na</creator><creator>Yang, Yao</creator><creator>Meng, Meng</creator><creator>Huang, Lan-lan</creator><creator>Xiong, Pei-wen</creator><creator>Li, Song-yang</creator><creator>Yang, Qing-lan</creator><creator>Wang, Li-li</creator><creator>Li, Xiao-yao</creator><creator>Li, Li-ping</creator><creator>Lu, Xiu-lan</creator><creator>Li, Xiao-hui</creator><creator>Wei, Yan-ling</creator><creator>Xiao, Zheng-hui</creator><creator>Yu, Jian-hua</creator><creator>Deng, You-cai</creator><general>Springer Nature Singapore</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231101</creationdate><title>mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development</title><author>Deng, Ya-fei ; Wu, Shu-ting ; Peng, Hong-yan ; Tian, Lei ; Li, Ya-na ; Yang, Yao ; Meng, Meng ; Huang, Lan-lan ; Xiong, Pei-wen ; Li, Song-yang ; Yang, Qing-lan ; Wang, Li-li ; Li, Xiao-yao ; Li, Li-ping ; Lu, Xiu-lan ; Li, Xiao-hui ; Wei, Yan-ling ; Xiao, Zheng-hui ; Yu, Jian-hua ; Deng, You-cai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-3543d3b9fb0e0719c12e68c871376bf83ddc87b3a82424bece95891afd9464573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Birds of prey</topic><topic>Homeostasis</topic><topic>Immunity, Innate</topic><topic>Immunology</topic><topic>Internal Medicine</topic><topic>Intestine</topic><topic>Lymphocytes</topic><topic>Lymphoid cells</topic><topic>Mammals - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 2 - metabolism</topic><topic>Medical Microbiology</topic><topic>Mice</topic><topic>Pharmacology/Toxicology</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Rapamycin</topic><topic>Rapamycin-Insensitive Companion of mTOR Protein - metabolism</topic><topic>Regulatory-Associated Protein of mTOR - genetics</topic><topic>Sirolimus - pharmacology</topic><topic>TOR protein</topic><topic>Transcription Factors - metabolism</topic><topic>Vaccine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Ya-fei</creatorcontrib><creatorcontrib>Wu, Shu-ting</creatorcontrib><creatorcontrib>Peng, Hong-yan</creatorcontrib><creatorcontrib>Tian, Lei</creatorcontrib><creatorcontrib>Li, Ya-na</creatorcontrib><creatorcontrib>Yang, Yao</creatorcontrib><creatorcontrib>Meng, Meng</creatorcontrib><creatorcontrib>Huang, Lan-lan</creatorcontrib><creatorcontrib>Xiong, Pei-wen</creatorcontrib><creatorcontrib>Li, Song-yang</creatorcontrib><creatorcontrib>Yang, Qing-lan</creatorcontrib><creatorcontrib>Wang, Li-li</creatorcontrib><creatorcontrib>Li, Xiao-yao</creatorcontrib><creatorcontrib>Li, Li-ping</creatorcontrib><creatorcontrib>Lu, Xiu-lan</creatorcontrib><creatorcontrib>Li, Xiao-hui</creatorcontrib><creatorcontrib>Wei, Yan-ling</creatorcontrib><creatorcontrib>Xiao, Zheng-hui</creatorcontrib><creatorcontrib>Yu, Jian-hua</creatorcontrib><creatorcontrib>Deng, You-cai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta pharmacologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Ya-fei</au><au>Wu, Shu-ting</au><au>Peng, Hong-yan</au><au>Tian, Lei</au><au>Li, Ya-na</au><au>Yang, Yao</au><au>Meng, Meng</au><au>Huang, Lan-lan</au><au>Xiong, Pei-wen</au><au>Li, Song-yang</au><au>Yang, Qing-lan</au><au>Wang, Li-li</au><au>Li, Xiao-yao</au><au>Li, Li-ping</au><au>Lu, Xiu-lan</au><au>Li, Xiao-hui</au><au>Wei, Yan-ling</au><au>Xiao, Zheng-hui</au><au>Yu, Jian-hua</au><au>Deng, You-cai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development</atitle><jtitle>Acta pharmacologica Sinica</jtitle><stitle>Acta Pharmacol Sin</stitle><addtitle>Acta Pharmacol Sin</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>44</volume><issue>11</issue><spage>2243</spage><epage>2252</epage><pages>2243-2252</pages><issn>1671-4083</issn><issn>1745-7254</issn><eissn>1745-7254</eissn><abstract>Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulating ILC3 homeostasis remain unknown. In this study, we found that mTORC1 but not mTORC2 was critical in ILC3 development, IL-22 production, and ILC3-mediated intestinal homeostasis. Single-cell RNA sequencing revealed that mTORC1 deficiency led to disruption of ILC3 heterogeneity, showing an increase in differentiation into ILC1-like phenotypes. Mechanistically, mTORC1 deficiency decreased the expression of NFIL3, which is a critical transcription factor responsible for ILC3 development. The activities of both mTORC1 and mTORC2 were increased in wild-type ILC3s after activation by IL-23, whereas inhibition of mTORC1 by
Raptor
deletion or rapamycin treatment resulted in increased mTORC2 activity. Previous studies have demonstrated that S6K, the main downstream target of mTORC1, can directly phosphorylate Rictor to dampen mTORC2 activity. Our data found that inhibition of mTORC1 activity by rapamycin reduced Rictor phosphorylation in ILC3s. Reversing the increased mTORC2 activity
via
heterozygous or homozygous knockout of
Rictor
in
Raptor
-deleted ILC3s resulted in severe ILC3 loss and complete susceptibility to intestinal infection in mice with mTORC1 deficiency (100% mortality). Thus, mTORC1 acts as a rheostat of ILC3 heterogeneity, and mTORC2 protects ILC3s from severe loss of cells and immune activity against intestinal infection when mTORC1 activity is diminished.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>37407703</pmid><doi>10.1038/s41401-023-01120-8</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1671-4083 |
ispartof | Acta pharmacologica Sinica, 2023-11, Vol.44 (11), p.2243-2252 |
issn | 1671-4083 1745-7254 1745-7254 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10618277 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Biomedical and Life Sciences Biomedicine Birds of prey Homeostasis Immunity, Innate Immunology Internal Medicine Intestine Lymphocytes Lymphoid cells Mammals - metabolism Mechanistic Target of Rapamycin Complex 1 - metabolism Mechanistic Target of Rapamycin Complex 2 - metabolism Medical Microbiology Mice Pharmacology/Toxicology Phenotypes Phosphorylation Rapamycin Rapamycin-Insensitive Companion of mTOR Protein - metabolism Regulatory-Associated Protein of mTOR - genetics Sirolimus - pharmacology TOR protein Transcription Factors - metabolism Vaccine |
title | mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTORC2%20acts%20as%20a%20gatekeeper%20for%20mTORC1%20deficiency-mediated%20impairments%20in%20ILC3%20development&rft.jtitle=Acta%20pharmacologica%20Sinica&rft.au=Deng,%20Ya-fei&rft.date=2023-11-01&rft.volume=44&rft.issue=11&rft.spage=2243&rft.epage=2252&rft.pages=2243-2252&rft.issn=1671-4083&rft.eissn=1745-7254&rft_id=info:doi/10.1038/s41401-023-01120-8&rft_dat=%3Cproquest_pubme%3E2884496849%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884496849&rft_id=info:pmid/37407703&rfr_iscdi=true |