mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development

Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta pharmacologica Sinica 2023-11, Vol.44 (11), p.2243-2252
Hauptverfasser: Deng, Ya-fei, Wu, Shu-ting, Peng, Hong-yan, Tian, Lei, Li, Ya-na, Yang, Yao, Meng, Meng, Huang, Lan-lan, Xiong, Pei-wen, Li, Song-yang, Yang, Qing-lan, Wang, Li-li, Li, Xiao-yao, Li, Li-ping, Lu, Xiu-lan, Li, Xiao-hui, Wei, Yan-ling, Xiao, Zheng-hui, Yu, Jian-hua, Deng, You-cai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2252
container_issue 11
container_start_page 2243
container_title Acta pharmacologica Sinica
container_volume 44
creator Deng, Ya-fei
Wu, Shu-ting
Peng, Hong-yan
Tian, Lei
Li, Ya-na
Yang, Yao
Meng, Meng
Huang, Lan-lan
Xiong, Pei-wen
Li, Song-yang
Yang, Qing-lan
Wang, Li-li
Li, Xiao-yao
Li, Li-ping
Lu, Xiu-lan
Li, Xiao-hui
Wei, Yan-ling
Xiao, Zheng-hui
Yu, Jian-hua
Deng, You-cai
description Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulating ILC3 homeostasis remain unknown. In this study, we found that mTORC1 but not mTORC2 was critical in ILC3 development, IL-22 production, and ILC3-mediated intestinal homeostasis. Single-cell RNA sequencing revealed that mTORC1 deficiency led to disruption of ILC3 heterogeneity, showing an increase in differentiation into ILC1-like phenotypes. Mechanistically, mTORC1 deficiency decreased the expression of NFIL3, which is a critical transcription factor responsible for ILC3 development. The activities of both mTORC1 and mTORC2 were increased in wild-type ILC3s after activation by IL-23, whereas inhibition of mTORC1 by Raptor deletion or rapamycin treatment resulted in increased mTORC2 activity. Previous studies have demonstrated that S6K, the main downstream target of mTORC1, can directly phosphorylate Rictor to dampen mTORC2 activity. Our data found that inhibition of mTORC1 activity by rapamycin reduced Rictor phosphorylation in ILC3s. Reversing the increased mTORC2 activity via heterozygous or homozygous knockout of Rictor in Raptor -deleted ILC3s resulted in severe ILC3 loss and complete susceptibility to intestinal infection in mice with mTORC1 deficiency (100% mortality). Thus, mTORC1 acts as a rheostat of ILC3 heterogeneity, and mTORC2 protects ILC3s from severe loss of cells and immune activity against intestinal infection when mTORC1 activity is diminished.
doi_str_mv 10.1038/s41401-023-01120-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10618277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884496849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-3543d3b9fb0e0719c12e68c871376bf83ddc87b3a82424bece95891afd9464573</originalsourceid><addsrcrecordid>eNp9kU1rVTEQhoNYbK3-ARdywI2b2Ewm5yRZiVz8KFwoSN24CTk5c66p58vk3kL_vbm9tdouhEAymWfemeFl7BWIdyDQnGUFSgAXErkAkIKbJ-wEtKq5lrV6Wt6NBq6EwWP2POcrIVAi2GfsGLUSWgs8Yd_Hy4uvK1n5sM2VL6fa-C39JFooVf2cqts8VB31MUSawg0fqYuF6ao4Lj6mkaZSGqfqfL3Cwl3TMC_7zxfsqPdDppd39yn79unj5eoLX198Pl99WPOgELYca4UdtrZvBQkNNoCkxgSjAXXT9ga7rgQteiOVVC0FsrWx4PvOqkbVGk_Z-4PusmvLbKG0Tn5wS4qjTzdu9tE9zEzxh9vM1w5EA0bqvcLbO4U0_9pR3rox5kDD4Cead9lJg2htAVVB3zxCr-Zdmsp-hTJK2cYoWyh5oEKac07U308Dwu29cwfvXPHO3XrnTCl6_e8e9yV_zCoAHoBcUtOG0t_e_5H9DeBVo18</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884496849</pqid></control><display><type>article</type><title>mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Deng, Ya-fei ; Wu, Shu-ting ; Peng, Hong-yan ; Tian, Lei ; Li, Ya-na ; Yang, Yao ; Meng, Meng ; Huang, Lan-lan ; Xiong, Pei-wen ; Li, Song-yang ; Yang, Qing-lan ; Wang, Li-li ; Li, Xiao-yao ; Li, Li-ping ; Lu, Xiu-lan ; Li, Xiao-hui ; Wei, Yan-ling ; Xiao, Zheng-hui ; Yu, Jian-hua ; Deng, You-cai</creator><creatorcontrib>Deng, Ya-fei ; Wu, Shu-ting ; Peng, Hong-yan ; Tian, Lei ; Li, Ya-na ; Yang, Yao ; Meng, Meng ; Huang, Lan-lan ; Xiong, Pei-wen ; Li, Song-yang ; Yang, Qing-lan ; Wang, Li-li ; Li, Xiao-yao ; Li, Li-ping ; Lu, Xiu-lan ; Li, Xiao-hui ; Wei, Yan-ling ; Xiao, Zheng-hui ; Yu, Jian-hua ; Deng, You-cai</creatorcontrib><description>Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulating ILC3 homeostasis remain unknown. In this study, we found that mTORC1 but not mTORC2 was critical in ILC3 development, IL-22 production, and ILC3-mediated intestinal homeostasis. Single-cell RNA sequencing revealed that mTORC1 deficiency led to disruption of ILC3 heterogeneity, showing an increase in differentiation into ILC1-like phenotypes. Mechanistically, mTORC1 deficiency decreased the expression of NFIL3, which is a critical transcription factor responsible for ILC3 development. The activities of both mTORC1 and mTORC2 were increased in wild-type ILC3s after activation by IL-23, whereas inhibition of mTORC1 by Raptor deletion or rapamycin treatment resulted in increased mTORC2 activity. Previous studies have demonstrated that S6K, the main downstream target of mTORC1, can directly phosphorylate Rictor to dampen mTORC2 activity. Our data found that inhibition of mTORC1 activity by rapamycin reduced Rictor phosphorylation in ILC3s. Reversing the increased mTORC2 activity via heterozygous or homozygous knockout of Rictor in Raptor -deleted ILC3s resulted in severe ILC3 loss and complete susceptibility to intestinal infection in mice with mTORC1 deficiency (100% mortality). Thus, mTORC1 acts as a rheostat of ILC3 heterogeneity, and mTORC2 protects ILC3s from severe loss of cells and immune activity against intestinal infection when mTORC1 activity is diminished.</description><identifier>ISSN: 1671-4083</identifier><identifier>ISSN: 1745-7254</identifier><identifier>EISSN: 1745-7254</identifier><identifier>DOI: 10.1038/s41401-023-01120-8</identifier><identifier>PMID: 37407703</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Animals ; Biomedical and Life Sciences ; Biomedicine ; Birds of prey ; Homeostasis ; Immunity, Innate ; Immunology ; Internal Medicine ; Intestine ; Lymphocytes ; Lymphoid cells ; Mammals - metabolism ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mechanistic Target of Rapamycin Complex 2 - metabolism ; Medical Microbiology ; Mice ; Pharmacology/Toxicology ; Phenotypes ; Phosphorylation ; Rapamycin ; Rapamycin-Insensitive Companion of mTOR Protein - metabolism ; Regulatory-Associated Protein of mTOR - genetics ; Sirolimus - pharmacology ; TOR protein ; Transcription Factors - metabolism ; Vaccine</subject><ispartof>Acta pharmacologica Sinica, 2023-11, Vol.44 (11), p.2243-2252</ispartof><rights>The Author(s), under exclusive licence to Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Chinese Pharmacological Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Chinese Pharmacological Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-3543d3b9fb0e0719c12e68c871376bf83ddc87b3a82424bece95891afd9464573</citedby><cites>FETCH-LOGICAL-c431t-3543d3b9fb0e0719c12e68c871376bf83ddc87b3a82424bece95891afd9464573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618277/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618277/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37407703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Ya-fei</creatorcontrib><creatorcontrib>Wu, Shu-ting</creatorcontrib><creatorcontrib>Peng, Hong-yan</creatorcontrib><creatorcontrib>Tian, Lei</creatorcontrib><creatorcontrib>Li, Ya-na</creatorcontrib><creatorcontrib>Yang, Yao</creatorcontrib><creatorcontrib>Meng, Meng</creatorcontrib><creatorcontrib>Huang, Lan-lan</creatorcontrib><creatorcontrib>Xiong, Pei-wen</creatorcontrib><creatorcontrib>Li, Song-yang</creatorcontrib><creatorcontrib>Yang, Qing-lan</creatorcontrib><creatorcontrib>Wang, Li-li</creatorcontrib><creatorcontrib>Li, Xiao-yao</creatorcontrib><creatorcontrib>Li, Li-ping</creatorcontrib><creatorcontrib>Lu, Xiu-lan</creatorcontrib><creatorcontrib>Li, Xiao-hui</creatorcontrib><creatorcontrib>Wei, Yan-ling</creatorcontrib><creatorcontrib>Xiao, Zheng-hui</creatorcontrib><creatorcontrib>Yu, Jian-hua</creatorcontrib><creatorcontrib>Deng, You-cai</creatorcontrib><title>mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development</title><title>Acta pharmacologica Sinica</title><addtitle>Acta Pharmacol Sin</addtitle><addtitle>Acta Pharmacol Sin</addtitle><description>Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulating ILC3 homeostasis remain unknown. In this study, we found that mTORC1 but not mTORC2 was critical in ILC3 development, IL-22 production, and ILC3-mediated intestinal homeostasis. Single-cell RNA sequencing revealed that mTORC1 deficiency led to disruption of ILC3 heterogeneity, showing an increase in differentiation into ILC1-like phenotypes. Mechanistically, mTORC1 deficiency decreased the expression of NFIL3, which is a critical transcription factor responsible for ILC3 development. The activities of both mTORC1 and mTORC2 were increased in wild-type ILC3s after activation by IL-23, whereas inhibition of mTORC1 by Raptor deletion or rapamycin treatment resulted in increased mTORC2 activity. Previous studies have demonstrated that S6K, the main downstream target of mTORC1, can directly phosphorylate Rictor to dampen mTORC2 activity. Our data found that inhibition of mTORC1 activity by rapamycin reduced Rictor phosphorylation in ILC3s. Reversing the increased mTORC2 activity via heterozygous or homozygous knockout of Rictor in Raptor -deleted ILC3s resulted in severe ILC3 loss and complete susceptibility to intestinal infection in mice with mTORC1 deficiency (100% mortality). Thus, mTORC1 acts as a rheostat of ILC3 heterogeneity, and mTORC2 protects ILC3s from severe loss of cells and immune activity against intestinal infection when mTORC1 activity is diminished.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Birds of prey</subject><subject>Homeostasis</subject><subject>Immunity, Innate</subject><subject>Immunology</subject><subject>Internal Medicine</subject><subject>Intestine</subject><subject>Lymphocytes</subject><subject>Lymphoid cells</subject><subject>Mammals - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 2 - metabolism</subject><subject>Medical Microbiology</subject><subject>Mice</subject><subject>Pharmacology/Toxicology</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Rapamycin</subject><subject>Rapamycin-Insensitive Companion of mTOR Protein - metabolism</subject><subject>Regulatory-Associated Protein of mTOR - genetics</subject><subject>Sirolimus - pharmacology</subject><subject>TOR protein</subject><subject>Transcription Factors - metabolism</subject><subject>Vaccine</subject><issn>1671-4083</issn><issn>1745-7254</issn><issn>1745-7254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1rVTEQhoNYbK3-ARdywI2b2Ewm5yRZiVz8KFwoSN24CTk5c66p58vk3kL_vbm9tdouhEAymWfemeFl7BWIdyDQnGUFSgAXErkAkIKbJ-wEtKq5lrV6Wt6NBq6EwWP2POcrIVAi2GfsGLUSWgs8Yd_Hy4uvK1n5sM2VL6fa-C39JFooVf2cqts8VB31MUSawg0fqYuF6ao4Lj6mkaZSGqfqfL3Cwl3TMC_7zxfsqPdDppd39yn79unj5eoLX198Pl99WPOgELYca4UdtrZvBQkNNoCkxgSjAXXT9ga7rgQteiOVVC0FsrWx4PvOqkbVGk_Z-4PusmvLbKG0Tn5wS4qjTzdu9tE9zEzxh9vM1w5EA0bqvcLbO4U0_9pR3rox5kDD4Cead9lJg2htAVVB3zxCr-Zdmsp-hTJK2cYoWyh5oEKac07U308Dwu29cwfvXPHO3XrnTCl6_e8e9yV_zCoAHoBcUtOG0t_e_5H9DeBVo18</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Deng, Ya-fei</creator><creator>Wu, Shu-ting</creator><creator>Peng, Hong-yan</creator><creator>Tian, Lei</creator><creator>Li, Ya-na</creator><creator>Yang, Yao</creator><creator>Meng, Meng</creator><creator>Huang, Lan-lan</creator><creator>Xiong, Pei-wen</creator><creator>Li, Song-yang</creator><creator>Yang, Qing-lan</creator><creator>Wang, Li-li</creator><creator>Li, Xiao-yao</creator><creator>Li, Li-ping</creator><creator>Lu, Xiu-lan</creator><creator>Li, Xiao-hui</creator><creator>Wei, Yan-ling</creator><creator>Xiao, Zheng-hui</creator><creator>Yu, Jian-hua</creator><creator>Deng, You-cai</creator><general>Springer Nature Singapore</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231101</creationdate><title>mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development</title><author>Deng, Ya-fei ; Wu, Shu-ting ; Peng, Hong-yan ; Tian, Lei ; Li, Ya-na ; Yang, Yao ; Meng, Meng ; Huang, Lan-lan ; Xiong, Pei-wen ; Li, Song-yang ; Yang, Qing-lan ; Wang, Li-li ; Li, Xiao-yao ; Li, Li-ping ; Lu, Xiu-lan ; Li, Xiao-hui ; Wei, Yan-ling ; Xiao, Zheng-hui ; Yu, Jian-hua ; Deng, You-cai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-3543d3b9fb0e0719c12e68c871376bf83ddc87b3a82424bece95891afd9464573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Birds of prey</topic><topic>Homeostasis</topic><topic>Immunity, Innate</topic><topic>Immunology</topic><topic>Internal Medicine</topic><topic>Intestine</topic><topic>Lymphocytes</topic><topic>Lymphoid cells</topic><topic>Mammals - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 2 - metabolism</topic><topic>Medical Microbiology</topic><topic>Mice</topic><topic>Pharmacology/Toxicology</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Rapamycin</topic><topic>Rapamycin-Insensitive Companion of mTOR Protein - metabolism</topic><topic>Regulatory-Associated Protein of mTOR - genetics</topic><topic>Sirolimus - pharmacology</topic><topic>TOR protein</topic><topic>Transcription Factors - metabolism</topic><topic>Vaccine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Ya-fei</creatorcontrib><creatorcontrib>Wu, Shu-ting</creatorcontrib><creatorcontrib>Peng, Hong-yan</creatorcontrib><creatorcontrib>Tian, Lei</creatorcontrib><creatorcontrib>Li, Ya-na</creatorcontrib><creatorcontrib>Yang, Yao</creatorcontrib><creatorcontrib>Meng, Meng</creatorcontrib><creatorcontrib>Huang, Lan-lan</creatorcontrib><creatorcontrib>Xiong, Pei-wen</creatorcontrib><creatorcontrib>Li, Song-yang</creatorcontrib><creatorcontrib>Yang, Qing-lan</creatorcontrib><creatorcontrib>Wang, Li-li</creatorcontrib><creatorcontrib>Li, Xiao-yao</creatorcontrib><creatorcontrib>Li, Li-ping</creatorcontrib><creatorcontrib>Lu, Xiu-lan</creatorcontrib><creatorcontrib>Li, Xiao-hui</creatorcontrib><creatorcontrib>Wei, Yan-ling</creatorcontrib><creatorcontrib>Xiao, Zheng-hui</creatorcontrib><creatorcontrib>Yu, Jian-hua</creatorcontrib><creatorcontrib>Deng, You-cai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta pharmacologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Ya-fei</au><au>Wu, Shu-ting</au><au>Peng, Hong-yan</au><au>Tian, Lei</au><au>Li, Ya-na</au><au>Yang, Yao</au><au>Meng, Meng</au><au>Huang, Lan-lan</au><au>Xiong, Pei-wen</au><au>Li, Song-yang</au><au>Yang, Qing-lan</au><au>Wang, Li-li</au><au>Li, Xiao-yao</au><au>Li, Li-ping</au><au>Lu, Xiu-lan</au><au>Li, Xiao-hui</au><au>Wei, Yan-ling</au><au>Xiao, Zheng-hui</au><au>Yu, Jian-hua</au><au>Deng, You-cai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development</atitle><jtitle>Acta pharmacologica Sinica</jtitle><stitle>Acta Pharmacol Sin</stitle><addtitle>Acta Pharmacol Sin</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>44</volume><issue>11</issue><spage>2243</spage><epage>2252</epage><pages>2243-2252</pages><issn>1671-4083</issn><issn>1745-7254</issn><eissn>1745-7254</eissn><abstract>Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulating ILC3 homeostasis remain unknown. In this study, we found that mTORC1 but not mTORC2 was critical in ILC3 development, IL-22 production, and ILC3-mediated intestinal homeostasis. Single-cell RNA sequencing revealed that mTORC1 deficiency led to disruption of ILC3 heterogeneity, showing an increase in differentiation into ILC1-like phenotypes. Mechanistically, mTORC1 deficiency decreased the expression of NFIL3, which is a critical transcription factor responsible for ILC3 development. The activities of both mTORC1 and mTORC2 were increased in wild-type ILC3s after activation by IL-23, whereas inhibition of mTORC1 by Raptor deletion or rapamycin treatment resulted in increased mTORC2 activity. Previous studies have demonstrated that S6K, the main downstream target of mTORC1, can directly phosphorylate Rictor to dampen mTORC2 activity. Our data found that inhibition of mTORC1 activity by rapamycin reduced Rictor phosphorylation in ILC3s. Reversing the increased mTORC2 activity via heterozygous or homozygous knockout of Rictor in Raptor -deleted ILC3s resulted in severe ILC3 loss and complete susceptibility to intestinal infection in mice with mTORC1 deficiency (100% mortality). Thus, mTORC1 acts as a rheostat of ILC3 heterogeneity, and mTORC2 protects ILC3s from severe loss of cells and immune activity against intestinal infection when mTORC1 activity is diminished.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>37407703</pmid><doi>10.1038/s41401-023-01120-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1671-4083
ispartof Acta pharmacologica Sinica, 2023-11, Vol.44 (11), p.2243-2252
issn 1671-4083
1745-7254
1745-7254
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10618277
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Animals
Biomedical and Life Sciences
Biomedicine
Birds of prey
Homeostasis
Immunity, Innate
Immunology
Internal Medicine
Intestine
Lymphocytes
Lymphoid cells
Mammals - metabolism
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mechanistic Target of Rapamycin Complex 2 - metabolism
Medical Microbiology
Mice
Pharmacology/Toxicology
Phenotypes
Phosphorylation
Rapamycin
Rapamycin-Insensitive Companion of mTOR Protein - metabolism
Regulatory-Associated Protein of mTOR - genetics
Sirolimus - pharmacology
TOR protein
Transcription Factors - metabolism
Vaccine
title mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTORC2%20acts%20as%20a%20gatekeeper%20for%20mTORC1%20deficiency-mediated%20impairments%20in%20ILC3%20development&rft.jtitle=Acta%20pharmacologica%20Sinica&rft.au=Deng,%20Ya-fei&rft.date=2023-11-01&rft.volume=44&rft.issue=11&rft.spage=2243&rft.epage=2252&rft.pages=2243-2252&rft.issn=1671-4083&rft.eissn=1745-7254&rft_id=info:doi/10.1038/s41401-023-01120-8&rft_dat=%3Cproquest_pubme%3E2884496849%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884496849&rft_id=info:pmid/37407703&rfr_iscdi=true