A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms
Abdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and m...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Society interface 2023-11, Vol.20 (208), p.20230472 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 208 |
container_start_page | 20230472 |
container_title | Journal of the Royal Society interface |
container_volume | 20 |
creator | Dalbosco, Misael Terzano, Michele Carniel, Thiago A Fancello, Eduardo A Holzapfel, Gerhard A |
description | Abdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and mechanical alterations in the tissue. Macro-scale geometries of a healthy aorta and idealized aneurysms with increasing diameter are developed on the basis of existing experimental data and subjected to physiological boundary conditions. Subsequently, microscopic representative volume elements of the abluminal side of each macro-model are employed to analyse the local kinematics at the cellular scale. The results suggest that the formation of the aneurysm disrupts the micromechanics of healthy tissue, which could trigger collagen growth and remodelling by mechanosensing cells. The resulting changes to the macro-mechanics and microstructure of the tissue seem to establish a new homeostatic state at the cellular scale, at least for the diameter range investigated. |
doi_str_mv | 10.1098/rsif.2023.0472 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10618057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885204619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-4aebe8398f63c915c6bc65f375df275b0aafb23624b386d2f7653864fa50b3683</originalsourceid><addsrcrecordid>eNpVUT1PwzAQtRCIlsLKiDKyJDh2bCcTqiq-pEpdYLZsx26NkrjYCaj_HkctVZnu6e7du48HwG0OsxxW5YMP1mQIIpzBgqEzMM1ZgVJCKTo_wRNwFcInhJhhQi7BBLMKMlihKVjNk_7HpUGJRifd0GpvI0xCP9S7xHVJv9FJq9VGdE5a17h1zJpEyNq1totE4XxvVSI6PfhdaMM1uDCiCfrmEGfg4_npffGaLlcvb4v5MlW4In1aCC11iavSUKyqnCgqFSUGM1IbxIiEQhiJMEWFxCWtkWGURFAYQaDEtMQz8LjX3Q6y1bXSXe9Fw7fetsLvuBOW_690dsPX7pvnkOYlJCwq3B8UvPsadOh5a4PSTRNvcUPgqCwJggXNq0jN9lTlXQhem-OcHPLRBj7awEcb-GhDbLg73e5I__s7_gXMVYV9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885204619</pqid></control><display><type>article</type><title>A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms</title><source>MEDLINE</source><source>PubMed Central</source><creator>Dalbosco, Misael ; Terzano, Michele ; Carniel, Thiago A ; Fancello, Eduardo A ; Holzapfel, Gerhard A</creator><creatorcontrib>Dalbosco, Misael ; Terzano, Michele ; Carniel, Thiago A ; Fancello, Eduardo A ; Holzapfel, Gerhard A</creatorcontrib><description>Abdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and mechanical alterations in the tissue. Macro-scale geometries of a healthy aorta and idealized aneurysms with increasing diameter are developed on the basis of existing experimental data and subjected to physiological boundary conditions. Subsequently, microscopic representative volume elements of the abluminal side of each macro-model are employed to analyse the local kinematics at the cellular scale. The results suggest that the formation of the aneurysm disrupts the micromechanics of healthy tissue, which could trigger collagen growth and remodelling by mechanosensing cells. The resulting changes to the macro-mechanics and microstructure of the tissue seem to establish a new homeostatic state at the cellular scale, at least for the diameter range investigated.</description><identifier>ISSN: 1742-5662</identifier><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2023.0472</identifier><identifier>PMID: 37907092</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Aorta ; Aorta, Abdominal ; Aortic Aneurysm, Abdominal ; Biomechanical Phenomena ; Biophysics ; Humans ; Life Sciences–Engineering interface ; Models, Cardiovascular ; Risk Factors ; Stress, Mechanical</subject><ispartof>Journal of the Royal Society interface, 2023-11, Vol.20 (208), p.20230472</ispartof><rights>2023 The Author(s) Published by the Royal Society. All rights reserved. 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-4aebe8398f63c915c6bc65f375df275b0aafb23624b386d2f7653864fa50b3683</citedby><cites>FETCH-LOGICAL-c395t-4aebe8398f63c915c6bc65f375df275b0aafb23624b386d2f7653864fa50b3683</cites><orcidid>0000-0001-9085-3901 ; 0000-0001-7065-3945 ; 0000-0002-3467-5079 ; 0000-0002-5040-2556 ; 0000-0001-8119-5775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618057/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618057/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37907092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dalbosco, Misael</creatorcontrib><creatorcontrib>Terzano, Michele</creatorcontrib><creatorcontrib>Carniel, Thiago A</creatorcontrib><creatorcontrib>Fancello, Eduardo A</creatorcontrib><creatorcontrib>Holzapfel, Gerhard A</creatorcontrib><title>A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>Abdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and mechanical alterations in the tissue. Macro-scale geometries of a healthy aorta and idealized aneurysms with increasing diameter are developed on the basis of existing experimental data and subjected to physiological boundary conditions. Subsequently, microscopic representative volume elements of the abluminal side of each macro-model are employed to analyse the local kinematics at the cellular scale. The results suggest that the formation of the aneurysm disrupts the micromechanics of healthy tissue, which could trigger collagen growth and remodelling by mechanosensing cells. The resulting changes to the macro-mechanics and microstructure of the tissue seem to establish a new homeostatic state at the cellular scale, at least for the diameter range investigated.</description><subject>Aorta</subject><subject>Aorta, Abdominal</subject><subject>Aortic Aneurysm, Abdominal</subject><subject>Biomechanical Phenomena</subject><subject>Biophysics</subject><subject>Humans</subject><subject>Life Sciences–Engineering interface</subject><subject>Models, Cardiovascular</subject><subject>Risk Factors</subject><subject>Stress, Mechanical</subject><issn>1742-5662</issn><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUT1PwzAQtRCIlsLKiDKyJDh2bCcTqiq-pEpdYLZsx26NkrjYCaj_HkctVZnu6e7du48HwG0OsxxW5YMP1mQIIpzBgqEzMM1ZgVJCKTo_wRNwFcInhJhhQi7BBLMKMlihKVjNk_7HpUGJRifd0GpvI0xCP9S7xHVJv9FJq9VGdE5a17h1zJpEyNq1totE4XxvVSI6PfhdaMM1uDCiCfrmEGfg4_npffGaLlcvb4v5MlW4In1aCC11iavSUKyqnCgqFSUGM1IbxIiEQhiJMEWFxCWtkWGURFAYQaDEtMQz8LjX3Q6y1bXSXe9Fw7fetsLvuBOW_690dsPX7pvnkOYlJCwq3B8UvPsadOh5a4PSTRNvcUPgqCwJggXNq0jN9lTlXQhem-OcHPLRBj7awEcb-GhDbLg73e5I__s7_gXMVYV9</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Dalbosco, Misael</creator><creator>Terzano, Michele</creator><creator>Carniel, Thiago A</creator><creator>Fancello, Eduardo A</creator><creator>Holzapfel, Gerhard A</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9085-3901</orcidid><orcidid>https://orcid.org/0000-0001-7065-3945</orcidid><orcidid>https://orcid.org/0000-0002-3467-5079</orcidid><orcidid>https://orcid.org/0000-0002-5040-2556</orcidid><orcidid>https://orcid.org/0000-0001-8119-5775</orcidid></search><sort><creationdate>202311</creationdate><title>A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms</title><author>Dalbosco, Misael ; Terzano, Michele ; Carniel, Thiago A ; Fancello, Eduardo A ; Holzapfel, Gerhard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-4aebe8398f63c915c6bc65f375df275b0aafb23624b386d2f7653864fa50b3683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aorta</topic><topic>Aorta, Abdominal</topic><topic>Aortic Aneurysm, Abdominal</topic><topic>Biomechanical Phenomena</topic><topic>Biophysics</topic><topic>Humans</topic><topic>Life Sciences–Engineering interface</topic><topic>Models, Cardiovascular</topic><topic>Risk Factors</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalbosco, Misael</creatorcontrib><creatorcontrib>Terzano, Michele</creatorcontrib><creatorcontrib>Carniel, Thiago A</creatorcontrib><creatorcontrib>Fancello, Eduardo A</creatorcontrib><creatorcontrib>Holzapfel, Gerhard A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalbosco, Misael</au><au>Terzano, Michele</au><au>Carniel, Thiago A</au><au>Fancello, Eduardo A</au><au>Holzapfel, Gerhard A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2023-11</date><risdate>2023</risdate><volume>20</volume><issue>208</issue><spage>20230472</spage><pages>20230472-</pages><issn>1742-5662</issn><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Abdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and mechanical alterations in the tissue. Macro-scale geometries of a healthy aorta and idealized aneurysms with increasing diameter are developed on the basis of existing experimental data and subjected to physiological boundary conditions. Subsequently, microscopic representative volume elements of the abluminal side of each macro-model are employed to analyse the local kinematics at the cellular scale. The results suggest that the formation of the aneurysm disrupts the micromechanics of healthy tissue, which could trigger collagen growth and remodelling by mechanosensing cells. The resulting changes to the macro-mechanics and microstructure of the tissue seem to establish a new homeostatic state at the cellular scale, at least for the diameter range investigated.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>37907092</pmid><doi>10.1098/rsif.2023.0472</doi><orcidid>https://orcid.org/0000-0001-9085-3901</orcidid><orcidid>https://orcid.org/0000-0001-7065-3945</orcidid><orcidid>https://orcid.org/0000-0002-3467-5079</orcidid><orcidid>https://orcid.org/0000-0002-5040-2556</orcidid><orcidid>https://orcid.org/0000-0001-8119-5775</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5662 |
ispartof | Journal of the Royal Society interface, 2023-11, Vol.20 (208), p.20230472 |
issn | 1742-5662 1742-5689 1742-5662 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10618057 |
source | MEDLINE; PubMed Central |
subjects | Aorta Aorta, Abdominal Aortic Aneurysm, Abdominal Biomechanical Phenomena Biophysics Humans Life Sciences–Engineering interface Models, Cardiovascular Risk Factors Stress, Mechanical |
title | A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-scale%20numerical%20study%20on%20the%20mechanobiology%20of%20abdominal%20aortic%20aneurysms&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Dalbosco,%20Misael&rft.date=2023-11&rft.volume=20&rft.issue=208&rft.spage=20230472&rft.pages=20230472-&rft.issn=1742-5662&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2023.0472&rft_dat=%3Cproquest_pubme%3E2885204619%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885204619&rft_id=info:pmid/37907092&rfr_iscdi=true |