A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms

Abdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2023-11, Vol.20 (208), p.20230472
Hauptverfasser: Dalbosco, Misael, Terzano, Michele, Carniel, Thiago A, Fancello, Eduardo A, Holzapfel, Gerhard A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 208
container_start_page 20230472
container_title Journal of the Royal Society interface
container_volume 20
creator Dalbosco, Misael
Terzano, Michele
Carniel, Thiago A
Fancello, Eduardo A
Holzapfel, Gerhard A
description Abdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and mechanical alterations in the tissue. Macro-scale geometries of a healthy aorta and idealized aneurysms with increasing diameter are developed on the basis of existing experimental data and subjected to physiological boundary conditions. Subsequently, microscopic representative volume elements of the abluminal side of each macro-model are employed to analyse the local kinematics at the cellular scale. The results suggest that the formation of the aneurysm disrupts the micromechanics of healthy tissue, which could trigger collagen growth and remodelling by mechanosensing cells. The resulting changes to the macro-mechanics and microstructure of the tissue seem to establish a new homeostatic state at the cellular scale, at least for the diameter range investigated.
doi_str_mv 10.1098/rsif.2023.0472
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10618057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885204619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-4aebe8398f63c915c6bc65f375df275b0aafb23624b386d2f7653864fa50b3683</originalsourceid><addsrcrecordid>eNpVUT1PwzAQtRCIlsLKiDKyJDh2bCcTqiq-pEpdYLZsx26NkrjYCaj_HkctVZnu6e7du48HwG0OsxxW5YMP1mQIIpzBgqEzMM1ZgVJCKTo_wRNwFcInhJhhQi7BBLMKMlihKVjNk_7HpUGJRifd0GpvI0xCP9S7xHVJv9FJq9VGdE5a17h1zJpEyNq1totE4XxvVSI6PfhdaMM1uDCiCfrmEGfg4_npffGaLlcvb4v5MlW4In1aCC11iavSUKyqnCgqFSUGM1IbxIiEQhiJMEWFxCWtkWGURFAYQaDEtMQz8LjX3Q6y1bXSXe9Fw7fetsLvuBOW_690dsPX7pvnkOYlJCwq3B8UvPsadOh5a4PSTRNvcUPgqCwJggXNq0jN9lTlXQhem-OcHPLRBj7awEcb-GhDbLg73e5I__s7_gXMVYV9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885204619</pqid></control><display><type>article</type><title>A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms</title><source>MEDLINE</source><source>PubMed Central</source><creator>Dalbosco, Misael ; Terzano, Michele ; Carniel, Thiago A ; Fancello, Eduardo A ; Holzapfel, Gerhard A</creator><creatorcontrib>Dalbosco, Misael ; Terzano, Michele ; Carniel, Thiago A ; Fancello, Eduardo A ; Holzapfel, Gerhard A</creatorcontrib><description>Abdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and mechanical alterations in the tissue. Macro-scale geometries of a healthy aorta and idealized aneurysms with increasing diameter are developed on the basis of existing experimental data and subjected to physiological boundary conditions. Subsequently, microscopic representative volume elements of the abluminal side of each macro-model are employed to analyse the local kinematics at the cellular scale. The results suggest that the formation of the aneurysm disrupts the micromechanics of healthy tissue, which could trigger collagen growth and remodelling by mechanosensing cells. The resulting changes to the macro-mechanics and microstructure of the tissue seem to establish a new homeostatic state at the cellular scale, at least for the diameter range investigated.</description><identifier>ISSN: 1742-5662</identifier><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2023.0472</identifier><identifier>PMID: 37907092</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Aorta ; Aorta, Abdominal ; Aortic Aneurysm, Abdominal ; Biomechanical Phenomena ; Biophysics ; Humans ; Life Sciences–Engineering interface ; Models, Cardiovascular ; Risk Factors ; Stress, Mechanical</subject><ispartof>Journal of the Royal Society interface, 2023-11, Vol.20 (208), p.20230472</ispartof><rights>2023 The Author(s) Published by the Royal Society. All rights reserved. 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-4aebe8398f63c915c6bc65f375df275b0aafb23624b386d2f7653864fa50b3683</citedby><cites>FETCH-LOGICAL-c395t-4aebe8398f63c915c6bc65f375df275b0aafb23624b386d2f7653864fa50b3683</cites><orcidid>0000-0001-9085-3901 ; 0000-0001-7065-3945 ; 0000-0002-3467-5079 ; 0000-0002-5040-2556 ; 0000-0001-8119-5775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618057/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618057/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37907092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dalbosco, Misael</creatorcontrib><creatorcontrib>Terzano, Michele</creatorcontrib><creatorcontrib>Carniel, Thiago A</creatorcontrib><creatorcontrib>Fancello, Eduardo A</creatorcontrib><creatorcontrib>Holzapfel, Gerhard A</creatorcontrib><title>A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>Abdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and mechanical alterations in the tissue. Macro-scale geometries of a healthy aorta and idealized aneurysms with increasing diameter are developed on the basis of existing experimental data and subjected to physiological boundary conditions. Subsequently, microscopic representative volume elements of the abluminal side of each macro-model are employed to analyse the local kinematics at the cellular scale. The results suggest that the formation of the aneurysm disrupts the micromechanics of healthy tissue, which could trigger collagen growth and remodelling by mechanosensing cells. The resulting changes to the macro-mechanics and microstructure of the tissue seem to establish a new homeostatic state at the cellular scale, at least for the diameter range investigated.</description><subject>Aorta</subject><subject>Aorta, Abdominal</subject><subject>Aortic Aneurysm, Abdominal</subject><subject>Biomechanical Phenomena</subject><subject>Biophysics</subject><subject>Humans</subject><subject>Life Sciences–Engineering interface</subject><subject>Models, Cardiovascular</subject><subject>Risk Factors</subject><subject>Stress, Mechanical</subject><issn>1742-5662</issn><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUT1PwzAQtRCIlsLKiDKyJDh2bCcTqiq-pEpdYLZsx26NkrjYCaj_HkctVZnu6e7du48HwG0OsxxW5YMP1mQIIpzBgqEzMM1ZgVJCKTo_wRNwFcInhJhhQi7BBLMKMlihKVjNk_7HpUGJRifd0GpvI0xCP9S7xHVJv9FJq9VGdE5a17h1zJpEyNq1totE4XxvVSI6PfhdaMM1uDCiCfrmEGfg4_npffGaLlcvb4v5MlW4In1aCC11iavSUKyqnCgqFSUGM1IbxIiEQhiJMEWFxCWtkWGURFAYQaDEtMQz8LjX3Q6y1bXSXe9Fw7fetsLvuBOW_690dsPX7pvnkOYlJCwq3B8UvPsadOh5a4PSTRNvcUPgqCwJggXNq0jN9lTlXQhem-OcHPLRBj7awEcb-GhDbLg73e5I__s7_gXMVYV9</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Dalbosco, Misael</creator><creator>Terzano, Michele</creator><creator>Carniel, Thiago A</creator><creator>Fancello, Eduardo A</creator><creator>Holzapfel, Gerhard A</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9085-3901</orcidid><orcidid>https://orcid.org/0000-0001-7065-3945</orcidid><orcidid>https://orcid.org/0000-0002-3467-5079</orcidid><orcidid>https://orcid.org/0000-0002-5040-2556</orcidid><orcidid>https://orcid.org/0000-0001-8119-5775</orcidid></search><sort><creationdate>202311</creationdate><title>A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms</title><author>Dalbosco, Misael ; Terzano, Michele ; Carniel, Thiago A ; Fancello, Eduardo A ; Holzapfel, Gerhard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-4aebe8398f63c915c6bc65f375df275b0aafb23624b386d2f7653864fa50b3683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aorta</topic><topic>Aorta, Abdominal</topic><topic>Aortic Aneurysm, Abdominal</topic><topic>Biomechanical Phenomena</topic><topic>Biophysics</topic><topic>Humans</topic><topic>Life Sciences–Engineering interface</topic><topic>Models, Cardiovascular</topic><topic>Risk Factors</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalbosco, Misael</creatorcontrib><creatorcontrib>Terzano, Michele</creatorcontrib><creatorcontrib>Carniel, Thiago A</creatorcontrib><creatorcontrib>Fancello, Eduardo A</creatorcontrib><creatorcontrib>Holzapfel, Gerhard A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalbosco, Misael</au><au>Terzano, Michele</au><au>Carniel, Thiago A</au><au>Fancello, Eduardo A</au><au>Holzapfel, Gerhard A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2023-11</date><risdate>2023</risdate><volume>20</volume><issue>208</issue><spage>20230472</spage><pages>20230472-</pages><issn>1742-5662</issn><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Abdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and mechanical alterations in the tissue. Macro-scale geometries of a healthy aorta and idealized aneurysms with increasing diameter are developed on the basis of existing experimental data and subjected to physiological boundary conditions. Subsequently, microscopic representative volume elements of the abluminal side of each macro-model are employed to analyse the local kinematics at the cellular scale. The results suggest that the formation of the aneurysm disrupts the micromechanics of healthy tissue, which could trigger collagen growth and remodelling by mechanosensing cells. The resulting changes to the macro-mechanics and microstructure of the tissue seem to establish a new homeostatic state at the cellular scale, at least for the diameter range investigated.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>37907092</pmid><doi>10.1098/rsif.2023.0472</doi><orcidid>https://orcid.org/0000-0001-9085-3901</orcidid><orcidid>https://orcid.org/0000-0001-7065-3945</orcidid><orcidid>https://orcid.org/0000-0002-3467-5079</orcidid><orcidid>https://orcid.org/0000-0002-5040-2556</orcidid><orcidid>https://orcid.org/0000-0001-8119-5775</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1742-5662
ispartof Journal of the Royal Society interface, 2023-11, Vol.20 (208), p.20230472
issn 1742-5662
1742-5689
1742-5662
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10618057
source MEDLINE; PubMed Central
subjects Aorta
Aorta, Abdominal
Aortic Aneurysm, Abdominal
Biomechanical Phenomena
Biophysics
Humans
Life Sciences–Engineering interface
Models, Cardiovascular
Risk Factors
Stress, Mechanical
title A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-scale%20numerical%20study%20on%20the%20mechanobiology%20of%20abdominal%20aortic%20aneurysms&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Dalbosco,%20Misael&rft.date=2023-11&rft.volume=20&rft.issue=208&rft.spage=20230472&rft.pages=20230472-&rft.issn=1742-5662&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2023.0472&rft_dat=%3Cproquest_pubme%3E2885204619%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885204619&rft_id=info:pmid/37907092&rfr_iscdi=true