Polymeric Materials Obtained by Extrusion and Injection Molding from Lignocellulosic Agroindustrial Biomass

This review presents the advances in polymeric materials achieved by extrusion and injection molding from lignocellulosic agroindustrial biomass. Biomass, which is derived from agricultural and industrial waste, is a renewable and abundant feedstock that contains mainly cellulose, hemicellulose, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-10, Vol.15 (20), p.4046
Hauptverfasser: Pacheco, Ada, Evangelista-Osorio, Arian, Muchaypiña-Flores, Katherine Gabriela, Marzano-Barreda, Luis Alejandro, Paredes-Concepción, Perla, Palacin-Baldeón, Heidy, Dos Santos, Maicon Sérgio Nascimento, Tres, Marcus Vinícius, Zabot, Giovani Leone, Olivera-Montenegro, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This review presents the advances in polymeric materials achieved by extrusion and injection molding from lignocellulosic agroindustrial biomass. Biomass, which is derived from agricultural and industrial waste, is a renewable and abundant feedstock that contains mainly cellulose, hemicellulose, and lignin. To improve the properties and functions of polymeric materials, cellulose is subjected to a variety of modifications. The most common modifications are surface modification, grafting, chemical procedures, and molecule chemical grafting. Injection molding and extrusion technologies are crucial in shaping and manufacturing polymer composites, with precise control over the process and material selection. Furthermore, injection molding involves four phases: plasticization, injection, cooling, and ejection, with a focus on energy efficiency. Fundamental aspects of an injection molding machine, such as the motor, hopper, heating units, nozzle, and clamping unit, are discussed. Extrusion technology, commonly used as a preliminary step to injection molding, presents challenges regarding fiber reinforcement and stress accumulation, while lignin-based polymeric materials are challenging due to their hydrophobicity. The diverse applications of these biodegradable materials include automotive industries, construction, food packaging, and various consumer goods. Polymeric materials are positioned to offer even bigger contributions to sustainable and eco-friendly solutions in the future, as research and development continues.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15204046