Sequence Characterization of Extra-Chromosomal Circular DNA Content in Multiple Blackgrass (Alopecurus myosuroides) Populations

Alopecurus myosuroides (blackgrass) is a problematic weed of Western European winter wheat, and its success is largely due to widespread multiple-herbicide resistance. Previous analysis of F2 seed families derived from two distinct blackgrass populations exhibiting equivalent non-target site resista...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2023-10, Vol.14 (10), p.1905
Hauptverfasser: Fu, Wangfang, MacGregor, Dana R, Comont, David, Saski, Christopher A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1905
container_title Genes
container_volume 14
creator Fu, Wangfang
MacGregor, Dana R
Comont, David
Saski, Christopher A
description Alopecurus myosuroides (blackgrass) is a problematic weed of Western European winter wheat, and its success is largely due to widespread multiple-herbicide resistance. Previous analysis of F2 seed families derived from two distinct blackgrass populations exhibiting equivalent non-target site resistance (NTSR) phenotypes shows resistance is polygenic and evolves from standing genetic variation. Using a CIDER-seq pipeline, we show that herbicide-resistant (HR) and herbicide-sensitive (HS) F3 plants from these F2 seed families as well as the parent populations they were derived from carry extra-chromosomal circular DNA (eccDNA). We identify the similarities and differences in the coding structures within and between resistant and sensitive populations. Although the numbers and size of detected eccDNAs varied between the populations, comparisons between the HR and HS blackgrass populations identified shared and unique coding content, predicted genes, and functional protein domains. These include genes related to herbicide detoxification such as Cytochrome P450s, ATP-binding cassette transporters, and glutathione transferases including AmGSTF1. eccDNA content was mapped to the A. myosuroides reference genome, revealing genomic regions at the distal end of chromosome 5 and the near center of chromosomes 1 and 7 as regions with a high number of mapped eccDNA gene density. Mapping to 15 known herbicide-resistant QTL regions showed that the eccDNA coding sequences matched twelve, with four QTL matching HS coding sequences; only one region contained HR coding sequences. These findings establish that, like other pernicious weeds, blackgrass has eccDNAs that contain homologs of chromosomal genes, and these may contribute genetic heterogeneity and evolutionary innovation to rapidly adapt to abiotic stresses, including herbicide treatment.
doi_str_mv 10.3390/genes14101905
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10606437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772063752</galeid><sourcerecordid>A772063752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-22acc30ed4d6089f4d7138440bf594ad902f12a6bf7dc61ad0e178cd09cbc15a3</originalsourceid><addsrcrecordid>eNptkstv1DAQhyMEolXpkbslLuWQMn7FyQktoTyk8pCAs-V1Jrsujr21E0S58K_jVStgEZ6DR55vfuMZTVU9pnDOeQfPNhgwU0GBdiDvVccMFK-FYPL-X_5RdZrzFZQjgAHIh9URV20nmRTH1c9PeL1gsEj6rUnGzpjcDzO7GEgcycX3OZm636Y4xRwn40nvkl28SeTl-xXpY5gxzMQF8m7xs9t5JC-8sV83yeRMzlY-7tAuaclkuol5SdENmJ-Sj3FXNPZF8qPqwWh8xtO7-6T68uric_-mvvzw-m2_uqytaGCuGTPWcsBBDA203SgGRXkrBKxH2QkzdMBGykyzHtVgG2oGQKpaO0Bn15ZKw0-q57e6u2U94WDLt5PxepfcZNKNjsbpw0hwW72J3zSFBhrBVVE4u1NIsYwsz3py2aL3JmBcsmZty6WismsK-uQf9CouKZT-9lSZuxK8-0NtjEftwhhLYbsX1SulGDRcSVao8_9QxQacnI0BR1feDxLq2wSbYs4Jx99NUtD7rdEHW8N_AVhytUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882547439</pqid></control><display><type>article</type><title>Sequence Characterization of Extra-Chromosomal Circular DNA Content in Multiple Blackgrass (Alopecurus myosuroides) Populations</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Fu, Wangfang ; MacGregor, Dana R ; Comont, David ; Saski, Christopher A</creator><creatorcontrib>Fu, Wangfang ; MacGregor, Dana R ; Comont, David ; Saski, Christopher A</creatorcontrib><description>Alopecurus myosuroides (blackgrass) is a problematic weed of Western European winter wheat, and its success is largely due to widespread multiple-herbicide resistance. Previous analysis of F2 seed families derived from two distinct blackgrass populations exhibiting equivalent non-target site resistance (NTSR) phenotypes shows resistance is polygenic and evolves from standing genetic variation. Using a CIDER-seq pipeline, we show that herbicide-resistant (HR) and herbicide-sensitive (HS) F3 plants from these F2 seed families as well as the parent populations they were derived from carry extra-chromosomal circular DNA (eccDNA). We identify the similarities and differences in the coding structures within and between resistant and sensitive populations. Although the numbers and size of detected eccDNAs varied between the populations, comparisons between the HR and HS blackgrass populations identified shared and unique coding content, predicted genes, and functional protein domains. These include genes related to herbicide detoxification such as Cytochrome P450s, ATP-binding cassette transporters, and glutathione transferases including AmGSTF1. eccDNA content was mapped to the A. myosuroides reference genome, revealing genomic regions at the distal end of chromosome 5 and the near center of chromosomes 1 and 7 as regions with a high number of mapped eccDNA gene density. Mapping to 15 known herbicide-resistant QTL regions showed that the eccDNA coding sequences matched twelve, with four QTL matching HS coding sequences; only one region contained HR coding sequences. These findings establish that, like other pernicious weeds, blackgrass has eccDNAs that contain homologs of chromosomal genes, and these may contribute genetic heterogeneity and evolutionary innovation to rapidly adapt to abiotic stresses, including herbicide treatment.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes14101905</identifier><identifier>PMID: 37895254</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alopecurus myosuroides ; ATP-binding protein ; Biosynthesis ; Chromosome 5 ; Chromosomes ; Circular DNA ; Detoxification ; DNA methylation ; Gene mapping ; Genes ; Genetic diversity ; Genetic engineering ; Genomes ; Genomics ; Glutathione ; Herbicide resistance ; Herbicides ; Mutation ; Nucleotide sequence ; Phenotypes ; Quantitative genetics ; Quantitative trait loci ; Seeds ; Transferases</subject><ispartof>Genes, 2023-10, Vol.14 (10), p.1905</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-22acc30ed4d6089f4d7138440bf594ad902f12a6bf7dc61ad0e178cd09cbc15a3</citedby><cites>FETCH-LOGICAL-c460t-22acc30ed4d6089f4d7138440bf594ad902f12a6bf7dc61ad0e178cd09cbc15a3</cites><orcidid>0000-0003-0543-0408 ; 0000-0002-2780-4274 ; 0000-0002-5235-1035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606437/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606437/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids></links><search><creatorcontrib>Fu, Wangfang</creatorcontrib><creatorcontrib>MacGregor, Dana R</creatorcontrib><creatorcontrib>Comont, David</creatorcontrib><creatorcontrib>Saski, Christopher A</creatorcontrib><title>Sequence Characterization of Extra-Chromosomal Circular DNA Content in Multiple Blackgrass (Alopecurus myosuroides) Populations</title><title>Genes</title><description>Alopecurus myosuroides (blackgrass) is a problematic weed of Western European winter wheat, and its success is largely due to widespread multiple-herbicide resistance. Previous analysis of F2 seed families derived from two distinct blackgrass populations exhibiting equivalent non-target site resistance (NTSR) phenotypes shows resistance is polygenic and evolves from standing genetic variation. Using a CIDER-seq pipeline, we show that herbicide-resistant (HR) and herbicide-sensitive (HS) F3 plants from these F2 seed families as well as the parent populations they were derived from carry extra-chromosomal circular DNA (eccDNA). We identify the similarities and differences in the coding structures within and between resistant and sensitive populations. Although the numbers and size of detected eccDNAs varied between the populations, comparisons between the HR and HS blackgrass populations identified shared and unique coding content, predicted genes, and functional protein domains. These include genes related to herbicide detoxification such as Cytochrome P450s, ATP-binding cassette transporters, and glutathione transferases including AmGSTF1. eccDNA content was mapped to the A. myosuroides reference genome, revealing genomic regions at the distal end of chromosome 5 and the near center of chromosomes 1 and 7 as regions with a high number of mapped eccDNA gene density. Mapping to 15 known herbicide-resistant QTL regions showed that the eccDNA coding sequences matched twelve, with four QTL matching HS coding sequences; only one region contained HR coding sequences. These findings establish that, like other pernicious weeds, blackgrass has eccDNAs that contain homologs of chromosomal genes, and these may contribute genetic heterogeneity and evolutionary innovation to rapidly adapt to abiotic stresses, including herbicide treatment.</description><subject>Alopecurus myosuroides</subject><subject>ATP-binding protein</subject><subject>Biosynthesis</subject><subject>Chromosome 5</subject><subject>Chromosomes</subject><subject>Circular DNA</subject><subject>Detoxification</subject><subject>DNA methylation</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glutathione</subject><subject>Herbicide resistance</subject><subject>Herbicides</subject><subject>Mutation</subject><subject>Nucleotide sequence</subject><subject>Phenotypes</subject><subject>Quantitative genetics</subject><subject>Quantitative trait loci</subject><subject>Seeds</subject><subject>Transferases</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkstv1DAQhyMEolXpkbslLuWQMn7FyQktoTyk8pCAs-V1Jrsujr21E0S58K_jVStgEZ6DR55vfuMZTVU9pnDOeQfPNhgwU0GBdiDvVccMFK-FYPL-X_5RdZrzFZQjgAHIh9URV20nmRTH1c9PeL1gsEj6rUnGzpjcDzO7GEgcycX3OZm636Y4xRwn40nvkl28SeTl-xXpY5gxzMQF8m7xs9t5JC-8sV83yeRMzlY-7tAuaclkuol5SdENmJ-Sj3FXNPZF8qPqwWh8xtO7-6T68uric_-mvvzw-m2_uqytaGCuGTPWcsBBDA203SgGRXkrBKxH2QkzdMBGykyzHtVgG2oGQKpaO0Bn15ZKw0-q57e6u2U94WDLt5PxepfcZNKNjsbpw0hwW72J3zSFBhrBVVE4u1NIsYwsz3py2aL3JmBcsmZty6WismsK-uQf9CouKZT-9lSZuxK8-0NtjEftwhhLYbsX1SulGDRcSVao8_9QxQacnI0BR1feDxLq2wSbYs4Jx99NUtD7rdEHW8N_AVhytUw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Fu, Wangfang</creator><creator>MacGregor, Dana R</creator><creator>Comont, David</creator><creator>Saski, Christopher A</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0543-0408</orcidid><orcidid>https://orcid.org/0000-0002-2780-4274</orcidid><orcidid>https://orcid.org/0000-0002-5235-1035</orcidid></search><sort><creationdate>20231001</creationdate><title>Sequence Characterization of Extra-Chromosomal Circular DNA Content in Multiple Blackgrass (Alopecurus myosuroides) Populations</title><author>Fu, Wangfang ; MacGregor, Dana R ; Comont, David ; Saski, Christopher A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-22acc30ed4d6089f4d7138440bf594ad902f12a6bf7dc61ad0e178cd09cbc15a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alopecurus myosuroides</topic><topic>ATP-binding protein</topic><topic>Biosynthesis</topic><topic>Chromosome 5</topic><topic>Chromosomes</topic><topic>Circular DNA</topic><topic>Detoxification</topic><topic>DNA methylation</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glutathione</topic><topic>Herbicide resistance</topic><topic>Herbicides</topic><topic>Mutation</topic><topic>Nucleotide sequence</topic><topic>Phenotypes</topic><topic>Quantitative genetics</topic><topic>Quantitative trait loci</topic><topic>Seeds</topic><topic>Transferases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Wangfang</creatorcontrib><creatorcontrib>MacGregor, Dana R</creatorcontrib><creatorcontrib>Comont, David</creatorcontrib><creatorcontrib>Saski, Christopher A</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Wangfang</au><au>MacGregor, Dana R</au><au>Comont, David</au><au>Saski, Christopher A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequence Characterization of Extra-Chromosomal Circular DNA Content in Multiple Blackgrass (Alopecurus myosuroides) Populations</atitle><jtitle>Genes</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>14</volume><issue>10</issue><spage>1905</spage><pages>1905-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Alopecurus myosuroides (blackgrass) is a problematic weed of Western European winter wheat, and its success is largely due to widespread multiple-herbicide resistance. Previous analysis of F2 seed families derived from two distinct blackgrass populations exhibiting equivalent non-target site resistance (NTSR) phenotypes shows resistance is polygenic and evolves from standing genetic variation. Using a CIDER-seq pipeline, we show that herbicide-resistant (HR) and herbicide-sensitive (HS) F3 plants from these F2 seed families as well as the parent populations they were derived from carry extra-chromosomal circular DNA (eccDNA). We identify the similarities and differences in the coding structures within and between resistant and sensitive populations. Although the numbers and size of detected eccDNAs varied between the populations, comparisons between the HR and HS blackgrass populations identified shared and unique coding content, predicted genes, and functional protein domains. These include genes related to herbicide detoxification such as Cytochrome P450s, ATP-binding cassette transporters, and glutathione transferases including AmGSTF1. eccDNA content was mapped to the A. myosuroides reference genome, revealing genomic regions at the distal end of chromosome 5 and the near center of chromosomes 1 and 7 as regions with a high number of mapped eccDNA gene density. Mapping to 15 known herbicide-resistant QTL regions showed that the eccDNA coding sequences matched twelve, with four QTL matching HS coding sequences; only one region contained HR coding sequences. These findings establish that, like other pernicious weeds, blackgrass has eccDNAs that contain homologs of chromosomal genes, and these may contribute genetic heterogeneity and evolutionary innovation to rapidly adapt to abiotic stresses, including herbicide treatment.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37895254</pmid><doi>10.3390/genes14101905</doi><orcidid>https://orcid.org/0000-0003-0543-0408</orcidid><orcidid>https://orcid.org/0000-0002-2780-4274</orcidid><orcidid>https://orcid.org/0000-0002-5235-1035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2023-10, Vol.14 (10), p.1905
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10606437
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Alopecurus myosuroides
ATP-binding protein
Biosynthesis
Chromosome 5
Chromosomes
Circular DNA
Detoxification
DNA methylation
Gene mapping
Genes
Genetic diversity
Genetic engineering
Genomes
Genomics
Glutathione
Herbicide resistance
Herbicides
Mutation
Nucleotide sequence
Phenotypes
Quantitative genetics
Quantitative trait loci
Seeds
Transferases
title Sequence Characterization of Extra-Chromosomal Circular DNA Content in Multiple Blackgrass (Alopecurus myosuroides) Populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequence%20Characterization%20of%20Extra-Chromosomal%20Circular%20DNA%20Content%20in%20Multiple%20Blackgrass%20(Alopecurus%20myosuroides)%20Populations&rft.jtitle=Genes&rft.au=Fu,%20Wangfang&rft.date=2023-10-01&rft.volume=14&rft.issue=10&rft.spage=1905&rft.pages=1905-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes14101905&rft_dat=%3Cgale_pubme%3EA772063752%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882547439&rft_id=info:pmid/37895254&rft_galeid=A772063752&rfr_iscdi=true