Circularizing PET‑G Multimaterials: Life Cycle Assessment and Techno-Economic Analysis

The recycling of multimaterials such as payment or access cards poses significant challenges. Building on previous experimental work demonstrating the feasibility of chemically recyclable payment cards made from glycol-modified poly­(ethylene terephthalate) (PET-G), we use life cycle assessment and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2023-10, Vol.11 (42), p.15328-15337
Hauptverfasser: Huang, Peng, Ahamed, Ashiq, Sun, Ruitao, De Hoe, Guilhem X., Pitcher, Joe, Mushing, Alan, Lourenço, Fernando, Shaver, Michael P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15337
container_issue 42
container_start_page 15328
container_title ACS sustainable chemistry & engineering
container_volume 11
creator Huang, Peng
Ahamed, Ashiq
Sun, Ruitao
De Hoe, Guilhem X.
Pitcher, Joe
Mushing, Alan
Lourenço, Fernando
Shaver, Michael P.
description The recycling of multimaterials such as payment or access cards poses significant challenges. Building on previous experimental work demonstrating the feasibility of chemically recyclable payment cards made from glycol-modified poly­(ethylene terephthalate) (PET-G), we use life cycle assessment and techno-economic analysis to investigate two chemical recycling scenarios and evaluate their potential environmental and economic benefits. Recovering all components from the depolymerized products (Scenario 1) achieves substantial environmental benefits across most categories, reducing global warming by up to 67% compared to only recovering major components (Scenario 2). However, the environmental benefits in Scenario 1 incur 69% higher total annualized costs, causing its profitability to be dependent on a minimum selling price of £13.4/kg for cyclohexanedimethanol and less than a 10% discount rate. In contrast, Scenario 2 is less sensitive to discount rate variation and thus a lower risk and more economically feasible option, albeit less environmentally sustainable.
doi_str_mv 10.1021/acssuschemeng.3c04047
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10598876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2883573109</sourcerecordid><originalsourceid>FETCH-LOGICAL-a431t-3df44bc2aaddec1081fcd9a92ea8bbd82dc678b251d9257e6a8e33ab619197693</originalsourceid><addsrcrecordid>eNqFUctK7EAQDaKgqJ8gZOkm2o88uu9GhmF8wIguRnDXdLorMy1JWrsSYVz5C_6iX2LLDBddWZsqqDoP6iTJCSVnlDB6rg3iiGYFHfTLM25ITvJqJzlgtBQZyUWx-2PeT44Rn0gsKTkT9CB5nLpgxlYH9-b6ZXo_W3y-f1ylt2M7uE4PEJxu8V86dw2k07VpIZ0gAmJUG1Ld23QBZtX7bGZ87ztn0kmv2zU6PEr2mgiF420_TB4uZ4vpdTa_u7qZTuaZzjkdMm6bPK8N09paMJQI2hgrtWSgRV1bwawpK1GzglrJigpKLYBzXZdUUlmVkh8mFxve57HuwJroK-hWPYdoP6yV10793vRupZb-VVFSSCGqMjKcbhmCfxkBB9U5NNC2ugc_omJC8KLilHyLFZtTEzxigOa_DiXqOw71Kw61jSPi6AYX1-rJjyE-Cf_AfAGQU5Zs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2883573109</pqid></control><display><type>article</type><title>Circularizing PET‑G Multimaterials: Life Cycle Assessment and Techno-Economic Analysis</title><source>ACS Publications</source><creator>Huang, Peng ; Ahamed, Ashiq ; Sun, Ruitao ; De Hoe, Guilhem X. ; Pitcher, Joe ; Mushing, Alan ; Lourenço, Fernando ; Shaver, Michael P.</creator><creatorcontrib>Huang, Peng ; Ahamed, Ashiq ; Sun, Ruitao ; De Hoe, Guilhem X. ; Pitcher, Joe ; Mushing, Alan ; Lourenço, Fernando ; Shaver, Michael P.</creatorcontrib><description>The recycling of multimaterials such as payment or access cards poses significant challenges. Building on previous experimental work demonstrating the feasibility of chemically recyclable payment cards made from glycol-modified poly­(ethylene terephthalate) (PET-G), we use life cycle assessment and techno-economic analysis to investigate two chemical recycling scenarios and evaluate their potential environmental and economic benefits. Recovering all components from the depolymerized products (Scenario 1) achieves substantial environmental benefits across most categories, reducing global warming by up to 67% compared to only recovering major components (Scenario 2). However, the environmental benefits in Scenario 1 incur 69% higher total annualized costs, causing its profitability to be dependent on a minimum selling price of £13.4/kg for cyclohexanedimethanol and less than a 10% discount rate. In contrast, Scenario 2 is less sensitive to discount rate variation and thus a lower risk and more economically feasible option, albeit less environmentally sustainable.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.3c04047</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2023-10, Vol.11 (42), p.15328-15337</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a431t-3df44bc2aaddec1081fcd9a92ea8bbd82dc678b251d9257e6a8e33ab619197693</citedby><cites>FETCH-LOGICAL-a431t-3df44bc2aaddec1081fcd9a92ea8bbd82dc678b251d9257e6a8e33ab619197693</cites><orcidid>0000-0001-6614-7310 ; 0000-0002-7152-6750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.3c04047$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.3c04047$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Huang, Peng</creatorcontrib><creatorcontrib>Ahamed, Ashiq</creatorcontrib><creatorcontrib>Sun, Ruitao</creatorcontrib><creatorcontrib>De Hoe, Guilhem X.</creatorcontrib><creatorcontrib>Pitcher, Joe</creatorcontrib><creatorcontrib>Mushing, Alan</creatorcontrib><creatorcontrib>Lourenço, Fernando</creatorcontrib><creatorcontrib>Shaver, Michael P.</creatorcontrib><title>Circularizing PET‑G Multimaterials: Life Cycle Assessment and Techno-Economic Analysis</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>The recycling of multimaterials such as payment or access cards poses significant challenges. Building on previous experimental work demonstrating the feasibility of chemically recyclable payment cards made from glycol-modified poly­(ethylene terephthalate) (PET-G), we use life cycle assessment and techno-economic analysis to investigate two chemical recycling scenarios and evaluate their potential environmental and economic benefits. Recovering all components from the depolymerized products (Scenario 1) achieves substantial environmental benefits across most categories, reducing global warming by up to 67% compared to only recovering major components (Scenario 2). However, the environmental benefits in Scenario 1 incur 69% higher total annualized costs, causing its profitability to be dependent on a minimum selling price of £13.4/kg for cyclohexanedimethanol and less than a 10% discount rate. In contrast, Scenario 2 is less sensitive to discount rate variation and thus a lower risk and more economically feasible option, albeit less environmentally sustainable.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUctK7EAQDaKgqJ8gZOkm2o88uu9GhmF8wIguRnDXdLorMy1JWrsSYVz5C_6iX2LLDBddWZsqqDoP6iTJCSVnlDB6rg3iiGYFHfTLM25ITvJqJzlgtBQZyUWx-2PeT44Rn0gsKTkT9CB5nLpgxlYH9-b6ZXo_W3y-f1ylt2M7uE4PEJxu8V86dw2k07VpIZ0gAmJUG1Ld23QBZtX7bGZ87ztn0kmv2zU6PEr2mgiF420_TB4uZ4vpdTa_u7qZTuaZzjkdMm6bPK8N09paMJQI2hgrtWSgRV1bwawpK1GzglrJigpKLYBzXZdUUlmVkh8mFxve57HuwJroK-hWPYdoP6yV10793vRupZb-VVFSSCGqMjKcbhmCfxkBB9U5NNC2ugc_omJC8KLilHyLFZtTEzxigOa_DiXqOw71Kw61jSPi6AYX1-rJjyE-Cf_AfAGQU5Zs</recordid><startdate>20231023</startdate><enddate>20231023</enddate><creator>Huang, Peng</creator><creator>Ahamed, Ashiq</creator><creator>Sun, Ruitao</creator><creator>De Hoe, Guilhem X.</creator><creator>Pitcher, Joe</creator><creator>Mushing, Alan</creator><creator>Lourenço, Fernando</creator><creator>Shaver, Michael P.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6614-7310</orcidid><orcidid>https://orcid.org/0000-0002-7152-6750</orcidid></search><sort><creationdate>20231023</creationdate><title>Circularizing PET‑G Multimaterials: Life Cycle Assessment and Techno-Economic Analysis</title><author>Huang, Peng ; Ahamed, Ashiq ; Sun, Ruitao ; De Hoe, Guilhem X. ; Pitcher, Joe ; Mushing, Alan ; Lourenço, Fernando ; Shaver, Michael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a431t-3df44bc2aaddec1081fcd9a92ea8bbd82dc678b251d9257e6a8e33ab619197693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Peng</creatorcontrib><creatorcontrib>Ahamed, Ashiq</creatorcontrib><creatorcontrib>Sun, Ruitao</creatorcontrib><creatorcontrib>De Hoe, Guilhem X.</creatorcontrib><creatorcontrib>Pitcher, Joe</creatorcontrib><creatorcontrib>Mushing, Alan</creatorcontrib><creatorcontrib>Lourenço, Fernando</creatorcontrib><creatorcontrib>Shaver, Michael P.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Peng</au><au>Ahamed, Ashiq</au><au>Sun, Ruitao</au><au>De Hoe, Guilhem X.</au><au>Pitcher, Joe</au><au>Mushing, Alan</au><au>Lourenço, Fernando</au><au>Shaver, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circularizing PET‑G Multimaterials: Life Cycle Assessment and Techno-Economic Analysis</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2023-10-23</date><risdate>2023</risdate><volume>11</volume><issue>42</issue><spage>15328</spage><epage>15337</epage><pages>15328-15337</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>The recycling of multimaterials such as payment or access cards poses significant challenges. Building on previous experimental work demonstrating the feasibility of chemically recyclable payment cards made from glycol-modified poly­(ethylene terephthalate) (PET-G), we use life cycle assessment and techno-economic analysis to investigate two chemical recycling scenarios and evaluate their potential environmental and economic benefits. Recovering all components from the depolymerized products (Scenario 1) achieves substantial environmental benefits across most categories, reducing global warming by up to 67% compared to only recovering major components (Scenario 2). However, the environmental benefits in Scenario 1 incur 69% higher total annualized costs, causing its profitability to be dependent on a minimum selling price of £13.4/kg for cyclohexanedimethanol and less than a 10% discount rate. In contrast, Scenario 2 is less sensitive to discount rate variation and thus a lower risk and more economically feasible option, albeit less environmentally sustainable.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.3c04047</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6614-7310</orcidid><orcidid>https://orcid.org/0000-0002-7152-6750</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2023-10, Vol.11 (42), p.15328-15337
issn 2168-0485
2168-0485
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10598876
source ACS Publications
title Circularizing PET‑G Multimaterials: Life Cycle Assessment and Techno-Economic Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circularizing%20PET%E2%80%91G%20Multimaterials:%20Life%20Cycle%20Assessment%20and%20Techno-Economic%20Analysis&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Huang,%20Peng&rft.date=2023-10-23&rft.volume=11&rft.issue=42&rft.spage=15328&rft.epage=15337&rft.pages=15328-15337&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.3c04047&rft_dat=%3Cproquest_pubme%3E2883573109%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2883573109&rft_id=info:pmid/&rfr_iscdi=true