Generative Artificial Intelligence Through ChatGPT and Other Large Language Models in Ophthalmology: Clinical Applications and Challenges

The rapid progress of large language models (LLMs) driving generative artificial intelligence applications heralds the potential of opportunities in health care. We conducted a review up to April 2023 on Google Scholar, Embase, MEDLINE, and Scopus using the following terms: "large language mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ophthalmology science (Online) 2023-12, Vol.3 (4), p.100394
Hauptverfasser: Tan, Ting Fang, Thirunavukarasu, Arun James, Campbell, J Peter, Keane, Pearse A, Pasquale, Louis R, Abramoff, Michael D, Kalpathy-Cramer, Jayashree, Lum, Flora, Kim, Judy E, Baxter, Sally L, Ting, Daniel Shu Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 100394
container_title Ophthalmology science (Online)
container_volume 3
creator Tan, Ting Fang
Thirunavukarasu, Arun James
Campbell, J Peter
Keane, Pearse A
Pasquale, Louis R
Abramoff, Michael D
Kalpathy-Cramer, Jayashree
Lum, Flora
Kim, Judy E
Baxter, Sally L
Ting, Daniel Shu Wei
description The rapid progress of large language models (LLMs) driving generative artificial intelligence applications heralds the potential of opportunities in health care. We conducted a review up to April 2023 on Google Scholar, Embase, MEDLINE, and Scopus using the following terms: "large language models," "generative artificial intelligence," "ophthalmology," "ChatGPT," and "eye," based on relevance to this review. From a clinical viewpoint specific to ophthalmologists, we explore from the different stakeholders' perspectives-including patients, physicians, and policymakers-the potential LLM applications in education, research, and clinical domains specific to ophthalmology. We also highlight the foreseeable challenges of LLM implementation into clinical practice, including the concerns of accuracy, interpretability, perpetuating bias, and data security. As LLMs continue to mature, it is essential for stakeholders to jointly establish standards for best practices to safeguard patient safety. Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
doi_str_mv 10.1016/j.xops.2023.100394
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10598525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2883572725</sourcerecordid><originalsourceid>FETCH-LOGICAL-p267t-3835a07ce01cf1a5e0ab9b3236670137704274414ed333a8f47552de8d813ec33</originalsourceid><addsrcrecordid>eNpVkclOwzAQhi0Eogh4AQ7IRy4tXuI45YKqCgpSUTmUc-Qm08SVawfbQfAIvDVWWVQuM79mRt9sCF1QMqKE5teb0bvrwogRxlOA8HF2gE5YnufDMc3E4Z4eoPMQNoQQJihnGT1GAy6LQkghTtDnDCx4FfUb4ImPeq0rrQx-tBGM0Q3YCvCy9a5vWjxtVZw9L7GyNV7EFjyeK99AsrbpVRJPrgYTsLZ40bWxVWbrjGs-bvDUaKurxJ10nUkiamfDjpOYxoBtIJyho7UyAc5__Cl6ub9bTh-G88XscTqZDzuWyzjkBReKyAoIrdZUCSBqNV5xxvNcEsqlJBmTWUYzqDnnqlhnaU9WQ1EXlEPF-Sm6_eZ2_WoLdQU2emXKzuut8h-lU7r8n7G6LRv3VlIixoVgIhGufgjevfYQYrnVoUr3UhZcH0pWpBklk7vSy_1mf11-H8C_ABFui_Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2883572725</pqid></control><display><type>article</type><title>Generative Artificial Intelligence Through ChatGPT and Other Large Language Models in Ophthalmology: Clinical Applications and Challenges</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Tan, Ting Fang ; Thirunavukarasu, Arun James ; Campbell, J Peter ; Keane, Pearse A ; Pasquale, Louis R ; Abramoff, Michael D ; Kalpathy-Cramer, Jayashree ; Lum, Flora ; Kim, Judy E ; Baxter, Sally L ; Ting, Daniel Shu Wei</creator><creatorcontrib>Tan, Ting Fang ; Thirunavukarasu, Arun James ; Campbell, J Peter ; Keane, Pearse A ; Pasquale, Louis R ; Abramoff, Michael D ; Kalpathy-Cramer, Jayashree ; Lum, Flora ; Kim, Judy E ; Baxter, Sally L ; Ting, Daniel Shu Wei</creatorcontrib><description>The rapid progress of large language models (LLMs) driving generative artificial intelligence applications heralds the potential of opportunities in health care. We conducted a review up to April 2023 on Google Scholar, Embase, MEDLINE, and Scopus using the following terms: "large language models," "generative artificial intelligence," "ophthalmology," "ChatGPT," and "eye," based on relevance to this review. From a clinical viewpoint specific to ophthalmologists, we explore from the different stakeholders' perspectives-including patients, physicians, and policymakers-the potential LLM applications in education, research, and clinical domains specific to ophthalmology. We also highlight the foreseeable challenges of LLM implementation into clinical practice, including the concerns of accuracy, interpretability, perpetuating bias, and data security. As LLMs continue to mature, it is essential for stakeholders to jointly establish standards for best practices to safeguard patient safety. Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</description><identifier>ISSN: 2666-9145</identifier><identifier>EISSN: 2666-9145</identifier><identifier>DOI: 10.1016/j.xops.2023.100394</identifier><identifier>PMID: 37885755</identifier><language>eng</language><publisher>Netherlands: Elsevier</publisher><subject>Original</subject><ispartof>Ophthalmology science (Online), 2023-12, Vol.3 (4), p.100394</ispartof><rights>2023 by the American Academy of Ophthalmology.</rights><rights>2023 by the American Academy of Ophthalmology. 2023 American Academy of Ophthalmology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598525/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598525/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37885755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Ting Fang</creatorcontrib><creatorcontrib>Thirunavukarasu, Arun James</creatorcontrib><creatorcontrib>Campbell, J Peter</creatorcontrib><creatorcontrib>Keane, Pearse A</creatorcontrib><creatorcontrib>Pasquale, Louis R</creatorcontrib><creatorcontrib>Abramoff, Michael D</creatorcontrib><creatorcontrib>Kalpathy-Cramer, Jayashree</creatorcontrib><creatorcontrib>Lum, Flora</creatorcontrib><creatorcontrib>Kim, Judy E</creatorcontrib><creatorcontrib>Baxter, Sally L</creatorcontrib><creatorcontrib>Ting, Daniel Shu Wei</creatorcontrib><title>Generative Artificial Intelligence Through ChatGPT and Other Large Language Models in Ophthalmology: Clinical Applications and Challenges</title><title>Ophthalmology science (Online)</title><addtitle>Ophthalmol Sci</addtitle><description>The rapid progress of large language models (LLMs) driving generative artificial intelligence applications heralds the potential of opportunities in health care. We conducted a review up to April 2023 on Google Scholar, Embase, MEDLINE, and Scopus using the following terms: "large language models," "generative artificial intelligence," "ophthalmology," "ChatGPT," and "eye," based on relevance to this review. From a clinical viewpoint specific to ophthalmologists, we explore from the different stakeholders' perspectives-including patients, physicians, and policymakers-the potential LLM applications in education, research, and clinical domains specific to ophthalmology. We also highlight the foreseeable challenges of LLM implementation into clinical practice, including the concerns of accuracy, interpretability, perpetuating bias, and data security. As LLMs continue to mature, it is essential for stakeholders to jointly establish standards for best practices to safeguard patient safety. Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</description><subject>Original</subject><issn>2666-9145</issn><issn>2666-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkclOwzAQhi0Eogh4AQ7IRy4tXuI45YKqCgpSUTmUc-Qm08SVawfbQfAIvDVWWVQuM79mRt9sCF1QMqKE5teb0bvrwogRxlOA8HF2gE5YnufDMc3E4Z4eoPMQNoQQJihnGT1GAy6LQkghTtDnDCx4FfUb4ImPeq0rrQx-tBGM0Q3YCvCy9a5vWjxtVZw9L7GyNV7EFjyeK99AsrbpVRJPrgYTsLZ40bWxVWbrjGs-bvDUaKurxJ10nUkiamfDjpOYxoBtIJyho7UyAc5__Cl6ub9bTh-G88XscTqZDzuWyzjkBReKyAoIrdZUCSBqNV5xxvNcEsqlJBmTWUYzqDnnqlhnaU9WQ1EXlEPF-Sm6_eZ2_WoLdQU2emXKzuut8h-lU7r8n7G6LRv3VlIixoVgIhGufgjevfYQYrnVoUr3UhZcH0pWpBklk7vSy_1mf11-H8C_ABFui_Y</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Tan, Ting Fang</creator><creator>Thirunavukarasu, Arun James</creator><creator>Campbell, J Peter</creator><creator>Keane, Pearse A</creator><creator>Pasquale, Louis R</creator><creator>Abramoff, Michael D</creator><creator>Kalpathy-Cramer, Jayashree</creator><creator>Lum, Flora</creator><creator>Kim, Judy E</creator><creator>Baxter, Sally L</creator><creator>Ting, Daniel Shu Wei</creator><general>Elsevier</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231201</creationdate><title>Generative Artificial Intelligence Through ChatGPT and Other Large Language Models in Ophthalmology: Clinical Applications and Challenges</title><author>Tan, Ting Fang ; Thirunavukarasu, Arun James ; Campbell, J Peter ; Keane, Pearse A ; Pasquale, Louis R ; Abramoff, Michael D ; Kalpathy-Cramer, Jayashree ; Lum, Flora ; Kim, Judy E ; Baxter, Sally L ; Ting, Daniel Shu Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p267t-3835a07ce01cf1a5e0ab9b3236670137704274414ed333a8f47552de8d813ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Ting Fang</creatorcontrib><creatorcontrib>Thirunavukarasu, Arun James</creatorcontrib><creatorcontrib>Campbell, J Peter</creatorcontrib><creatorcontrib>Keane, Pearse A</creatorcontrib><creatorcontrib>Pasquale, Louis R</creatorcontrib><creatorcontrib>Abramoff, Michael D</creatorcontrib><creatorcontrib>Kalpathy-Cramer, Jayashree</creatorcontrib><creatorcontrib>Lum, Flora</creatorcontrib><creatorcontrib>Kim, Judy E</creatorcontrib><creatorcontrib>Baxter, Sally L</creatorcontrib><creatorcontrib>Ting, Daniel Shu Wei</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ophthalmology science (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Ting Fang</au><au>Thirunavukarasu, Arun James</au><au>Campbell, J Peter</au><au>Keane, Pearse A</au><au>Pasquale, Louis R</au><au>Abramoff, Michael D</au><au>Kalpathy-Cramer, Jayashree</au><au>Lum, Flora</au><au>Kim, Judy E</au><au>Baxter, Sally L</au><au>Ting, Daniel Shu Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generative Artificial Intelligence Through ChatGPT and Other Large Language Models in Ophthalmology: Clinical Applications and Challenges</atitle><jtitle>Ophthalmology science (Online)</jtitle><addtitle>Ophthalmol Sci</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>3</volume><issue>4</issue><spage>100394</spage><pages>100394-</pages><issn>2666-9145</issn><eissn>2666-9145</eissn><abstract>The rapid progress of large language models (LLMs) driving generative artificial intelligence applications heralds the potential of opportunities in health care. We conducted a review up to April 2023 on Google Scholar, Embase, MEDLINE, and Scopus using the following terms: "large language models," "generative artificial intelligence," "ophthalmology," "ChatGPT," and "eye," based on relevance to this review. From a clinical viewpoint specific to ophthalmologists, we explore from the different stakeholders' perspectives-including patients, physicians, and policymakers-the potential LLM applications in education, research, and clinical domains specific to ophthalmology. We also highlight the foreseeable challenges of LLM implementation into clinical practice, including the concerns of accuracy, interpretability, perpetuating bias, and data security. As LLMs continue to mature, it is essential for stakeholders to jointly establish standards for best practices to safeguard patient safety. Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</abstract><cop>Netherlands</cop><pub>Elsevier</pub><pmid>37885755</pmid><doi>10.1016/j.xops.2023.100394</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-9145
ispartof Ophthalmology science (Online), 2023-12, Vol.3 (4), p.100394
issn 2666-9145
2666-9145
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10598525
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Original
title Generative Artificial Intelligence Through ChatGPT and Other Large Language Models in Ophthalmology: Clinical Applications and Challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generative%20Artificial%20Intelligence%20Through%20ChatGPT%20and%20Other%20Large%20Language%20Models%20in%20Ophthalmology:%20Clinical%20Applications%20and%20Challenges&rft.jtitle=Ophthalmology%20science%20(Online)&rft.au=Tan,%20Ting%20Fang&rft.date=2023-12-01&rft.volume=3&rft.issue=4&rft.spage=100394&rft.pages=100394-&rft.issn=2666-9145&rft.eissn=2666-9145&rft_id=info:doi/10.1016/j.xops.2023.100394&rft_dat=%3Cproquest_pubme%3E2883572725%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2883572725&rft_id=info:pmid/37885755&rfr_iscdi=true