Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants

Objectives While established for energy-integrating detector computed tomography (CT), the effect of virtual monoenergetic imaging (VMI) and iterative metal artifact reduction (iMAR) in photon-counting detector (PCD) CT lacks thorough investigation. This study evaluates VMI, iMAR, and combinations t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2023-11, Vol.33 (11), p.7818-7829
Hauptverfasser: Patzer, Theresa Sophie, Kunz, Andreas Steven, Huflage, Henner, Gruschwitz, Philipp, Pannenbecker, Pauline, Afat, Saif, Herrmann, Judith, Petritsch, Bernhard, Bley, Thorsten Alexander, Grunz, Jan-Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7829
container_issue 11
container_start_page 7818
container_title European radiology
container_volume 33
creator Patzer, Theresa Sophie
Kunz, Andreas Steven
Huflage, Henner
Gruschwitz, Philipp
Pannenbecker, Pauline
Afat, Saif
Herrmann, Judith
Petritsch, Bernhard
Bley, Thorsten Alexander
Grunz, Jan-Peter
description Objectives While established for energy-integrating detector computed tomography (CT), the effect of virtual monoenergetic imaging (VMI) and iterative metal artifact reduction (iMAR) in photon-counting detector (PCD) CT lacks thorough investigation. This study evaluates VMI, iMAR, and combinations thereof in PCD-CT of patients with dental implants. Material and methods In 50 patients (25 women; mean age 62.0 ± 9.9 years), polychromatic 120 kVp imaging (T3D), VMI, T3D iMAR , and VMI iMAR were compared. VMIs were reconstructed at 40, 70, 110, 150, and 190 keV. Artifact reduction was assessed by attenuation and noise measurements in the most hyper- and hypodense artifacts, as well as in artifact-impaired soft tissue of the mouth floor. Three readers subjectively evaluated artifact extent and soft tissue interpretability. Furthermore, new artifacts through overcorrection were assessed. Results iMAR reduced hyper-/hypodense artifacts (T3D 1305.0/−1418.4 versus T3D iMAR 103.2/−46.9 HU), soft tissue impairment (106.7 versus 39.7 HU), and image noise (16.9 versus 5.2 HU) compared to non-iMAR datasets ( p  ≤ 0.001). VMI iMAR ≥ 110 keV subjectively enhanced artifact reduction over T3D iMAR ( p  ≤ 0.023). Without iMAR, VMI displayed no measurable artifact reduction ( p  ≥ 0.186) and facilitated no significant denoising over T3D ( p  ≥ 0.366). However, VMI ≥ 110 keV reduced soft tissue impairment ( p  ≤ 0.009). VMI iMAR ≥ 110 keV resulted in less overcorrection than T3D iMAR ( p  ≤ 0.001). Inter-reader reliability was moderate/good for hyperdense (0.707), hypodense (0.802), and soft tissue artifacts (0.804). Conclusion While VMI alone holds minimal metal artifact reduction potential, iMAR post-processing enabled substantial reduction of hyperdense and hypodense artifacts. The combination of VMI ≥ 110 keV and iMAR resulted in the least extensive metal artifacts. Clinical relevance Combining iMAR with VMI represents a potent tool for maxillofacial PCD-CT with dental implants achieving substantial artifact reduction and high image quality. Key Points • Post-processing of photon-counting CT scans with an iterative metal artifact reduction algorithm substantially reduces hyperdense and hypodense artifacts arising from dental implants. • Virtual monoenergetic images presented only minimal metal artifact reduction potential. • The combination of both provided a considerable benefit in subjective analysis compared to iterative metal artifact reduction alone.
doi_str_mv 10.1007/s00330-023-09790-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10598126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881053562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-1a6d73d98fe76516ec0d8a81dce1f7ce4f94fd02dc39cc20e393a1d25bfc801b3</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEoqXwAhyQJS5cAmM7WTsnhFZAK1XiAmfLa0-yrhI72M6ifSJeE6dbSuHAyaOZb_7x2H9VvaTwlgKIdwmAc6iB8Ro60UF9fFSd04azmoJsHj-Iz6pnKd0AQEcb8bQ644LJRgo4r35uw7Rz3vmBHFzMix7JFHxAj3HA7Axxkx7WqvaWuIxRZ3dAMmEupI7Z9dpkEtEuJrvgifOkdzHlelgl9G1u3occfG3C4vMqZcI0LxktyWEKQ9Tz_khCT-ZCo8-J_HB5T2wJywg3zaMuyefVk16PCV_cnRfVt08fv24v6-svn6-2H65r04g211RvrOC2kz2KTUs3aMBKLak1SHthsOm7prfArOGdMQyQd1xTy9pdbyTQHb-o3p9052U3YWnzOepRzbG8QzyqoJ36u-LdXg3hoCi0naRsUxTe3CnE8H3BlNXkksGxrIFhSYpJxptOtmJFX_-D3oQl-rJfoWRR5O2GFYqdKBNDShH7-9tQUKsR1MkIqhhB3RpBHUvTq4d73Lf8_vkC8BOQSskPGP_M_o_sL_1xxh4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881053562</pqid></control><display><type>article</type><title>Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Patzer, Theresa Sophie ; Kunz, Andreas Steven ; Huflage, Henner ; Gruschwitz, Philipp ; Pannenbecker, Pauline ; Afat, Saif ; Herrmann, Judith ; Petritsch, Bernhard ; Bley, Thorsten Alexander ; Grunz, Jan-Peter</creator><creatorcontrib>Patzer, Theresa Sophie ; Kunz, Andreas Steven ; Huflage, Henner ; Gruschwitz, Philipp ; Pannenbecker, Pauline ; Afat, Saif ; Herrmann, Judith ; Petritsch, Bernhard ; Bley, Thorsten Alexander ; Grunz, Jan-Peter</creatorcontrib><description>Objectives While established for energy-integrating detector computed tomography (CT), the effect of virtual monoenergetic imaging (VMI) and iterative metal artifact reduction (iMAR) in photon-counting detector (PCD) CT lacks thorough investigation. This study evaluates VMI, iMAR, and combinations thereof in PCD-CT of patients with dental implants. Material and methods In 50 patients (25 women; mean age 62.0 ± 9.9 years), polychromatic 120 kVp imaging (T3D), VMI, T3D iMAR , and VMI iMAR were compared. VMIs were reconstructed at 40, 70, 110, 150, and 190 keV. Artifact reduction was assessed by attenuation and noise measurements in the most hyper- and hypodense artifacts, as well as in artifact-impaired soft tissue of the mouth floor. Three readers subjectively evaluated artifact extent and soft tissue interpretability. Furthermore, new artifacts through overcorrection were assessed. Results iMAR reduced hyper-/hypodense artifacts (T3D 1305.0/−1418.4 versus T3D iMAR 103.2/−46.9 HU), soft tissue impairment (106.7 versus 39.7 HU), and image noise (16.9 versus 5.2 HU) compared to non-iMAR datasets ( p  ≤ 0.001). VMI iMAR ≥ 110 keV subjectively enhanced artifact reduction over T3D iMAR ( p  ≤ 0.023). Without iMAR, VMI displayed no measurable artifact reduction ( p  ≥ 0.186) and facilitated no significant denoising over T3D ( p  ≥ 0.366). However, VMI ≥ 110 keV reduced soft tissue impairment ( p  ≤ 0.009). VMI iMAR ≥ 110 keV resulted in less overcorrection than T3D iMAR ( p  ≤ 0.001). Inter-reader reliability was moderate/good for hyperdense (0.707), hypodense (0.802), and soft tissue artifacts (0.804). Conclusion While VMI alone holds minimal metal artifact reduction potential, iMAR post-processing enabled substantial reduction of hyperdense and hypodense artifacts. The combination of VMI ≥ 110 keV and iMAR resulted in the least extensive metal artifacts. Clinical relevance Combining iMAR with VMI represents a potent tool for maxillofacial PCD-CT with dental implants achieving substantial artifact reduction and high image quality. Key Points • Post-processing of photon-counting CT scans with an iterative metal artifact reduction algorithm substantially reduces hyperdense and hypodense artifacts arising from dental implants. • Virtual monoenergetic images presented only minimal metal artifact reduction potential. • The combination of both provided a considerable benefit in subjective analysis compared to iterative metal artifact reduction alone.</description><identifier>ISSN: 1432-1084</identifier><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-023-09790-y</identifier><identifier>PMID: 37284870</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aged ; Algorithms ; Bioaccumulation ; Computed Tomography ; Dental Implants ; Dental prosthetics ; Diagnostic Radiology ; Electrode potentials ; Evaluation ; Female ; Humans ; Image quality ; Imaging ; Impairment ; Internal Medicine ; Interventional Radiology ; Iterative methods ; Maxillofacial ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Metals ; Middle Aged ; Neuroradiology ; Photons ; Radiology ; Reproducibility of Results ; Soft tissues ; Tissues ; Tomography ; Tomography, X-Ray Computed - methods ; Ultrasound</subject><ispartof>European radiology, 2023-11, Vol.33 (11), p.7818-7829</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-1a6d73d98fe76516ec0d8a81dce1f7ce4f94fd02dc39cc20e393a1d25bfc801b3</citedby><cites>FETCH-LOGICAL-c475t-1a6d73d98fe76516ec0d8a81dce1f7ce4f94fd02dc39cc20e393a1d25bfc801b3</cites><orcidid>0000-0001-6169-1552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-023-09790-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-023-09790-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37284870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patzer, Theresa Sophie</creatorcontrib><creatorcontrib>Kunz, Andreas Steven</creatorcontrib><creatorcontrib>Huflage, Henner</creatorcontrib><creatorcontrib>Gruschwitz, Philipp</creatorcontrib><creatorcontrib>Pannenbecker, Pauline</creatorcontrib><creatorcontrib>Afat, Saif</creatorcontrib><creatorcontrib>Herrmann, Judith</creatorcontrib><creatorcontrib>Petritsch, Bernhard</creatorcontrib><creatorcontrib>Bley, Thorsten Alexander</creatorcontrib><creatorcontrib>Grunz, Jan-Peter</creatorcontrib><title>Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objectives While established for energy-integrating detector computed tomography (CT), the effect of virtual monoenergetic imaging (VMI) and iterative metal artifact reduction (iMAR) in photon-counting detector (PCD) CT lacks thorough investigation. This study evaluates VMI, iMAR, and combinations thereof in PCD-CT of patients with dental implants. Material and methods In 50 patients (25 women; mean age 62.0 ± 9.9 years), polychromatic 120 kVp imaging (T3D), VMI, T3D iMAR , and VMI iMAR were compared. VMIs were reconstructed at 40, 70, 110, 150, and 190 keV. Artifact reduction was assessed by attenuation and noise measurements in the most hyper- and hypodense artifacts, as well as in artifact-impaired soft tissue of the mouth floor. Three readers subjectively evaluated artifact extent and soft tissue interpretability. Furthermore, new artifacts through overcorrection were assessed. Results iMAR reduced hyper-/hypodense artifacts (T3D 1305.0/−1418.4 versus T3D iMAR 103.2/−46.9 HU), soft tissue impairment (106.7 versus 39.7 HU), and image noise (16.9 versus 5.2 HU) compared to non-iMAR datasets ( p  ≤ 0.001). VMI iMAR ≥ 110 keV subjectively enhanced artifact reduction over T3D iMAR ( p  ≤ 0.023). Without iMAR, VMI displayed no measurable artifact reduction ( p  ≥ 0.186) and facilitated no significant denoising over T3D ( p  ≥ 0.366). However, VMI ≥ 110 keV reduced soft tissue impairment ( p  ≤ 0.009). VMI iMAR ≥ 110 keV resulted in less overcorrection than T3D iMAR ( p  ≤ 0.001). Inter-reader reliability was moderate/good for hyperdense (0.707), hypodense (0.802), and soft tissue artifacts (0.804). Conclusion While VMI alone holds minimal metal artifact reduction potential, iMAR post-processing enabled substantial reduction of hyperdense and hypodense artifacts. The combination of VMI ≥ 110 keV and iMAR resulted in the least extensive metal artifacts. Clinical relevance Combining iMAR with VMI represents a potent tool for maxillofacial PCD-CT with dental implants achieving substantial artifact reduction and high image quality. Key Points • Post-processing of photon-counting CT scans with an iterative metal artifact reduction algorithm substantially reduces hyperdense and hypodense artifacts arising from dental implants. • Virtual monoenergetic images presented only minimal metal artifact reduction potential. • The combination of both provided a considerable benefit in subjective analysis compared to iterative metal artifact reduction alone.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Bioaccumulation</subject><subject>Computed Tomography</subject><subject>Dental Implants</subject><subject>Dental prosthetics</subject><subject>Diagnostic Radiology</subject><subject>Electrode potentials</subject><subject>Evaluation</subject><subject>Female</subject><subject>Humans</subject><subject>Image quality</subject><subject>Imaging</subject><subject>Impairment</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Iterative methods</subject><subject>Maxillofacial</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metals</subject><subject>Middle Aged</subject><subject>Neuroradiology</subject><subject>Photons</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Soft tissues</subject><subject>Tissues</subject><subject>Tomography</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Ultrasound</subject><issn>1432-1084</issn><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ksFu1DAQhiMEoqXwAhyQJS5cAmM7WTsnhFZAK1XiAmfLa0-yrhI72M6ifSJeE6dbSuHAyaOZb_7x2H9VvaTwlgKIdwmAc6iB8Ro60UF9fFSd04azmoJsHj-Iz6pnKd0AQEcb8bQ644LJRgo4r35uw7Rz3vmBHFzMix7JFHxAj3HA7Axxkx7WqvaWuIxRZ3dAMmEupI7Z9dpkEtEuJrvgifOkdzHlelgl9G1u3occfG3C4vMqZcI0LxktyWEKQ9Tz_khCT-ZCo8-J_HB5T2wJywg3zaMuyefVk16PCV_cnRfVt08fv24v6-svn6-2H65r04g211RvrOC2kz2KTUs3aMBKLak1SHthsOm7prfArOGdMQyQd1xTy9pdbyTQHb-o3p9052U3YWnzOepRzbG8QzyqoJ36u-LdXg3hoCi0naRsUxTe3CnE8H3BlNXkksGxrIFhSYpJxptOtmJFX_-D3oQl-rJfoWRR5O2GFYqdKBNDShH7-9tQUKsR1MkIqhhB3RpBHUvTq4d73Lf8_vkC8BOQSskPGP_M_o_sL_1xxh4</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Patzer, Theresa Sophie</creator><creator>Kunz, Andreas Steven</creator><creator>Huflage, Henner</creator><creator>Gruschwitz, Philipp</creator><creator>Pannenbecker, Pauline</creator><creator>Afat, Saif</creator><creator>Herrmann, Judith</creator><creator>Petritsch, Bernhard</creator><creator>Bley, Thorsten Alexander</creator><creator>Grunz, Jan-Peter</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6169-1552</orcidid></search><sort><creationdate>20231101</creationdate><title>Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants</title><author>Patzer, Theresa Sophie ; Kunz, Andreas Steven ; Huflage, Henner ; Gruschwitz, Philipp ; Pannenbecker, Pauline ; Afat, Saif ; Herrmann, Judith ; Petritsch, Bernhard ; Bley, Thorsten Alexander ; Grunz, Jan-Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-1a6d73d98fe76516ec0d8a81dce1f7ce4f94fd02dc39cc20e393a1d25bfc801b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Bioaccumulation</topic><topic>Computed Tomography</topic><topic>Dental Implants</topic><topic>Dental prosthetics</topic><topic>Diagnostic Radiology</topic><topic>Electrode potentials</topic><topic>Evaluation</topic><topic>Female</topic><topic>Humans</topic><topic>Image quality</topic><topic>Imaging</topic><topic>Impairment</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Iterative methods</topic><topic>Maxillofacial</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metals</topic><topic>Middle Aged</topic><topic>Neuroradiology</topic><topic>Photons</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Soft tissues</topic><topic>Tissues</topic><topic>Tomography</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patzer, Theresa Sophie</creatorcontrib><creatorcontrib>Kunz, Andreas Steven</creatorcontrib><creatorcontrib>Huflage, Henner</creatorcontrib><creatorcontrib>Gruschwitz, Philipp</creatorcontrib><creatorcontrib>Pannenbecker, Pauline</creatorcontrib><creatorcontrib>Afat, Saif</creatorcontrib><creatorcontrib>Herrmann, Judith</creatorcontrib><creatorcontrib>Petritsch, Bernhard</creatorcontrib><creatorcontrib>Bley, Thorsten Alexander</creatorcontrib><creatorcontrib>Grunz, Jan-Peter</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patzer, Theresa Sophie</au><au>Kunz, Andreas Steven</au><au>Huflage, Henner</au><au>Gruschwitz, Philipp</au><au>Pannenbecker, Pauline</au><au>Afat, Saif</au><au>Herrmann, Judith</au><au>Petritsch, Bernhard</au><au>Bley, Thorsten Alexander</au><au>Grunz, Jan-Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>33</volume><issue>11</issue><spage>7818</spage><epage>7829</epage><pages>7818-7829</pages><issn>1432-1084</issn><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objectives While established for energy-integrating detector computed tomography (CT), the effect of virtual monoenergetic imaging (VMI) and iterative metal artifact reduction (iMAR) in photon-counting detector (PCD) CT lacks thorough investigation. This study evaluates VMI, iMAR, and combinations thereof in PCD-CT of patients with dental implants. Material and methods In 50 patients (25 women; mean age 62.0 ± 9.9 years), polychromatic 120 kVp imaging (T3D), VMI, T3D iMAR , and VMI iMAR were compared. VMIs were reconstructed at 40, 70, 110, 150, and 190 keV. Artifact reduction was assessed by attenuation and noise measurements in the most hyper- and hypodense artifacts, as well as in artifact-impaired soft tissue of the mouth floor. Three readers subjectively evaluated artifact extent and soft tissue interpretability. Furthermore, new artifacts through overcorrection were assessed. Results iMAR reduced hyper-/hypodense artifacts (T3D 1305.0/−1418.4 versus T3D iMAR 103.2/−46.9 HU), soft tissue impairment (106.7 versus 39.7 HU), and image noise (16.9 versus 5.2 HU) compared to non-iMAR datasets ( p  ≤ 0.001). VMI iMAR ≥ 110 keV subjectively enhanced artifact reduction over T3D iMAR ( p  ≤ 0.023). Without iMAR, VMI displayed no measurable artifact reduction ( p  ≥ 0.186) and facilitated no significant denoising over T3D ( p  ≥ 0.366). However, VMI ≥ 110 keV reduced soft tissue impairment ( p  ≤ 0.009). VMI iMAR ≥ 110 keV resulted in less overcorrection than T3D iMAR ( p  ≤ 0.001). Inter-reader reliability was moderate/good for hyperdense (0.707), hypodense (0.802), and soft tissue artifacts (0.804). Conclusion While VMI alone holds minimal metal artifact reduction potential, iMAR post-processing enabled substantial reduction of hyperdense and hypodense artifacts. The combination of VMI ≥ 110 keV and iMAR resulted in the least extensive metal artifacts. Clinical relevance Combining iMAR with VMI represents a potent tool for maxillofacial PCD-CT with dental implants achieving substantial artifact reduction and high image quality. Key Points • Post-processing of photon-counting CT scans with an iterative metal artifact reduction algorithm substantially reduces hyperdense and hypodense artifacts arising from dental implants. • Virtual monoenergetic images presented only minimal metal artifact reduction potential. • The combination of both provided a considerable benefit in subjective analysis compared to iterative metal artifact reduction alone.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37284870</pmid><doi>10.1007/s00330-023-09790-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6169-1552</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-1084
ispartof European radiology, 2023-11, Vol.33 (11), p.7818-7829
issn 1432-1084
0938-7994
1432-1084
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10598126
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Aged
Algorithms
Bioaccumulation
Computed Tomography
Dental Implants
Dental prosthetics
Diagnostic Radiology
Electrode potentials
Evaluation
Female
Humans
Image quality
Imaging
Impairment
Internal Medicine
Interventional Radiology
Iterative methods
Maxillofacial
Medical imaging
Medicine
Medicine & Public Health
Metals
Middle Aged
Neuroradiology
Photons
Radiology
Reproducibility of Results
Soft tissues
Tissues
Tomography
Tomography, X-Ray Computed - methods
Ultrasound
title Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20virtual%20monoenergetic%20imaging%20and%20iterative%20metal%20artifact%20reduction%20in%20first-generation%20photon-counting%20computed%20tomography%20of%20patients%20with%20dental%20implants&rft.jtitle=European%20radiology&rft.au=Patzer,%20Theresa%20Sophie&rft.date=2023-11-01&rft.volume=33&rft.issue=11&rft.spage=7818&rft.epage=7829&rft.pages=7818-7829&rft.issn=1432-1084&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-023-09790-y&rft_dat=%3Cproquest_pubme%3E2881053562%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881053562&rft_id=info:pmid/37284870&rfr_iscdi=true