Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants
Objectives While established for energy-integrating detector computed tomography (CT), the effect of virtual monoenergetic imaging (VMI) and iterative metal artifact reduction (iMAR) in photon-counting detector (PCD) CT lacks thorough investigation. This study evaluates VMI, iMAR, and combinations t...
Gespeichert in:
Veröffentlicht in: | European radiology 2023-11, Vol.33 (11), p.7818-7829 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7829 |
---|---|
container_issue | 11 |
container_start_page | 7818 |
container_title | European radiology |
container_volume | 33 |
creator | Patzer, Theresa Sophie Kunz, Andreas Steven Huflage, Henner Gruschwitz, Philipp Pannenbecker, Pauline Afat, Saif Herrmann, Judith Petritsch, Bernhard Bley, Thorsten Alexander Grunz, Jan-Peter |
description | Objectives
While established for energy-integrating detector computed tomography (CT), the effect of virtual monoenergetic imaging (VMI) and iterative metal artifact reduction (iMAR) in photon-counting detector (PCD) CT lacks thorough investigation. This study evaluates VMI, iMAR, and combinations thereof in PCD-CT of patients with dental implants.
Material and methods
In 50 patients (25 women; mean age 62.0 ± 9.9 years), polychromatic 120 kVp imaging (T3D), VMI, T3D
iMAR
, and VMI
iMAR
were compared. VMIs were reconstructed at 40, 70, 110, 150, and 190 keV. Artifact reduction was assessed by attenuation and noise measurements in the most hyper- and hypodense artifacts, as well as in artifact-impaired soft tissue of the mouth floor. Three readers subjectively evaluated artifact extent and soft tissue interpretability. Furthermore, new artifacts through overcorrection were assessed.
Results
iMAR reduced hyper-/hypodense artifacts (T3D 1305.0/−1418.4 versus T3D
iMAR
103.2/−46.9 HU), soft tissue impairment (106.7 versus 39.7 HU), and image noise (16.9 versus 5.2 HU) compared to non-iMAR datasets (
p
≤ 0.001). VMI
iMAR
≥ 110 keV subjectively enhanced artifact reduction over T3D
iMAR
(
p
≤ 0.023). Without iMAR, VMI displayed no measurable artifact reduction (
p
≥ 0.186) and facilitated no significant denoising over T3D (
p
≥ 0.366). However, VMI ≥ 110 keV reduced soft tissue impairment (
p
≤ 0.009). VMI
iMAR
≥ 110 keV resulted in less overcorrection than T3D
iMAR
(
p
≤ 0.001). Inter-reader reliability was moderate/good for hyperdense (0.707), hypodense (0.802), and soft tissue artifacts (0.804).
Conclusion
While VMI alone holds minimal metal artifact reduction potential, iMAR post-processing enabled substantial reduction of hyperdense and hypodense artifacts. The combination of VMI ≥ 110 keV and iMAR resulted in the least extensive metal artifacts.
Clinical relevance
Combining iMAR with VMI represents a potent tool for maxillofacial PCD-CT with dental implants achieving substantial artifact reduction and high image quality.
Key Points
• Post-processing of photon-counting CT scans with an iterative metal artifact reduction algorithm substantially reduces hyperdense and hypodense artifacts arising from dental implants.
• Virtual monoenergetic images presented only minimal metal artifact reduction potential.
• The combination of both provided a considerable benefit in subjective analysis compared to iterative metal artifact reduction alone. |
doi_str_mv | 10.1007/s00330-023-09790-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10598126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881053562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-1a6d73d98fe76516ec0d8a81dce1f7ce4f94fd02dc39cc20e393a1d25bfc801b3</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEoqXwAhyQJS5cAmM7WTsnhFZAK1XiAmfLa0-yrhI72M6ifSJeE6dbSuHAyaOZb_7x2H9VvaTwlgKIdwmAc6iB8Ro60UF9fFSd04azmoJsHj-Iz6pnKd0AQEcb8bQ644LJRgo4r35uw7Rz3vmBHFzMix7JFHxAj3HA7Axxkx7WqvaWuIxRZ3dAMmEupI7Z9dpkEtEuJrvgifOkdzHlelgl9G1u3occfG3C4vMqZcI0LxktyWEKQ9Tz_khCT-ZCo8-J_HB5T2wJywg3zaMuyefVk16PCV_cnRfVt08fv24v6-svn6-2H65r04g211RvrOC2kz2KTUs3aMBKLak1SHthsOm7prfArOGdMQyQd1xTy9pdbyTQHb-o3p9052U3YWnzOepRzbG8QzyqoJ36u-LdXg3hoCi0naRsUxTe3CnE8H3BlNXkksGxrIFhSYpJxptOtmJFX_-D3oQl-rJfoWRR5O2GFYqdKBNDShH7-9tQUKsR1MkIqhhB3RpBHUvTq4d73Lf8_vkC8BOQSskPGP_M_o_sL_1xxh4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881053562</pqid></control><display><type>article</type><title>Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Patzer, Theresa Sophie ; Kunz, Andreas Steven ; Huflage, Henner ; Gruschwitz, Philipp ; Pannenbecker, Pauline ; Afat, Saif ; Herrmann, Judith ; Petritsch, Bernhard ; Bley, Thorsten Alexander ; Grunz, Jan-Peter</creator><creatorcontrib>Patzer, Theresa Sophie ; Kunz, Andreas Steven ; Huflage, Henner ; Gruschwitz, Philipp ; Pannenbecker, Pauline ; Afat, Saif ; Herrmann, Judith ; Petritsch, Bernhard ; Bley, Thorsten Alexander ; Grunz, Jan-Peter</creatorcontrib><description>Objectives
While established for energy-integrating detector computed tomography (CT), the effect of virtual monoenergetic imaging (VMI) and iterative metal artifact reduction (iMAR) in photon-counting detector (PCD) CT lacks thorough investigation. This study evaluates VMI, iMAR, and combinations thereof in PCD-CT of patients with dental implants.
Material and methods
In 50 patients (25 women; mean age 62.0 ± 9.9 years), polychromatic 120 kVp imaging (T3D), VMI, T3D
iMAR
, and VMI
iMAR
were compared. VMIs were reconstructed at 40, 70, 110, 150, and 190 keV. Artifact reduction was assessed by attenuation and noise measurements in the most hyper- and hypodense artifacts, as well as in artifact-impaired soft tissue of the mouth floor. Three readers subjectively evaluated artifact extent and soft tissue interpretability. Furthermore, new artifacts through overcorrection were assessed.
Results
iMAR reduced hyper-/hypodense artifacts (T3D 1305.0/−1418.4 versus T3D
iMAR
103.2/−46.9 HU), soft tissue impairment (106.7 versus 39.7 HU), and image noise (16.9 versus 5.2 HU) compared to non-iMAR datasets (
p
≤ 0.001). VMI
iMAR
≥ 110 keV subjectively enhanced artifact reduction over T3D
iMAR
(
p
≤ 0.023). Without iMAR, VMI displayed no measurable artifact reduction (
p
≥ 0.186) and facilitated no significant denoising over T3D (
p
≥ 0.366). However, VMI ≥ 110 keV reduced soft tissue impairment (
p
≤ 0.009). VMI
iMAR
≥ 110 keV resulted in less overcorrection than T3D
iMAR
(
p
≤ 0.001). Inter-reader reliability was moderate/good for hyperdense (0.707), hypodense (0.802), and soft tissue artifacts (0.804).
Conclusion
While VMI alone holds minimal metal artifact reduction potential, iMAR post-processing enabled substantial reduction of hyperdense and hypodense artifacts. The combination of VMI ≥ 110 keV and iMAR resulted in the least extensive metal artifacts.
Clinical relevance
Combining iMAR with VMI represents a potent tool for maxillofacial PCD-CT with dental implants achieving substantial artifact reduction and high image quality.
Key Points
• Post-processing of photon-counting CT scans with an iterative metal artifact reduction algorithm substantially reduces hyperdense and hypodense artifacts arising from dental implants.
• Virtual monoenergetic images presented only minimal metal artifact reduction potential.
• The combination of both provided a considerable benefit in subjective analysis compared to iterative metal artifact reduction alone.</description><identifier>ISSN: 1432-1084</identifier><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-023-09790-y</identifier><identifier>PMID: 37284870</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aged ; Algorithms ; Bioaccumulation ; Computed Tomography ; Dental Implants ; Dental prosthetics ; Diagnostic Radiology ; Electrode potentials ; Evaluation ; Female ; Humans ; Image quality ; Imaging ; Impairment ; Internal Medicine ; Interventional Radiology ; Iterative methods ; Maxillofacial ; Medical imaging ; Medicine ; Medicine & Public Health ; Metals ; Middle Aged ; Neuroradiology ; Photons ; Radiology ; Reproducibility of Results ; Soft tissues ; Tissues ; Tomography ; Tomography, X-Ray Computed - methods ; Ultrasound</subject><ispartof>European radiology, 2023-11, Vol.33 (11), p.7818-7829</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-1a6d73d98fe76516ec0d8a81dce1f7ce4f94fd02dc39cc20e393a1d25bfc801b3</citedby><cites>FETCH-LOGICAL-c475t-1a6d73d98fe76516ec0d8a81dce1f7ce4f94fd02dc39cc20e393a1d25bfc801b3</cites><orcidid>0000-0001-6169-1552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-023-09790-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-023-09790-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37284870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patzer, Theresa Sophie</creatorcontrib><creatorcontrib>Kunz, Andreas Steven</creatorcontrib><creatorcontrib>Huflage, Henner</creatorcontrib><creatorcontrib>Gruschwitz, Philipp</creatorcontrib><creatorcontrib>Pannenbecker, Pauline</creatorcontrib><creatorcontrib>Afat, Saif</creatorcontrib><creatorcontrib>Herrmann, Judith</creatorcontrib><creatorcontrib>Petritsch, Bernhard</creatorcontrib><creatorcontrib>Bley, Thorsten Alexander</creatorcontrib><creatorcontrib>Grunz, Jan-Peter</creatorcontrib><title>Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objectives
While established for energy-integrating detector computed tomography (CT), the effect of virtual monoenergetic imaging (VMI) and iterative metal artifact reduction (iMAR) in photon-counting detector (PCD) CT lacks thorough investigation. This study evaluates VMI, iMAR, and combinations thereof in PCD-CT of patients with dental implants.
Material and methods
In 50 patients (25 women; mean age 62.0 ± 9.9 years), polychromatic 120 kVp imaging (T3D), VMI, T3D
iMAR
, and VMI
iMAR
were compared. VMIs were reconstructed at 40, 70, 110, 150, and 190 keV. Artifact reduction was assessed by attenuation and noise measurements in the most hyper- and hypodense artifacts, as well as in artifact-impaired soft tissue of the mouth floor. Three readers subjectively evaluated artifact extent and soft tissue interpretability. Furthermore, new artifacts through overcorrection were assessed.
Results
iMAR reduced hyper-/hypodense artifacts (T3D 1305.0/−1418.4 versus T3D
iMAR
103.2/−46.9 HU), soft tissue impairment (106.7 versus 39.7 HU), and image noise (16.9 versus 5.2 HU) compared to non-iMAR datasets (
p
≤ 0.001). VMI
iMAR
≥ 110 keV subjectively enhanced artifact reduction over T3D
iMAR
(
p
≤ 0.023). Without iMAR, VMI displayed no measurable artifact reduction (
p
≥ 0.186) and facilitated no significant denoising over T3D (
p
≥ 0.366). However, VMI ≥ 110 keV reduced soft tissue impairment (
p
≤ 0.009). VMI
iMAR
≥ 110 keV resulted in less overcorrection than T3D
iMAR
(
p
≤ 0.001). Inter-reader reliability was moderate/good for hyperdense (0.707), hypodense (0.802), and soft tissue artifacts (0.804).
Conclusion
While VMI alone holds minimal metal artifact reduction potential, iMAR post-processing enabled substantial reduction of hyperdense and hypodense artifacts. The combination of VMI ≥ 110 keV and iMAR resulted in the least extensive metal artifacts.
Clinical relevance
Combining iMAR with VMI represents a potent tool for maxillofacial PCD-CT with dental implants achieving substantial artifact reduction and high image quality.
Key Points
• Post-processing of photon-counting CT scans with an iterative metal artifact reduction algorithm substantially reduces hyperdense and hypodense artifacts arising from dental implants.
• Virtual monoenergetic images presented only minimal metal artifact reduction potential.
• The combination of both provided a considerable benefit in subjective analysis compared to iterative metal artifact reduction alone.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Bioaccumulation</subject><subject>Computed Tomography</subject><subject>Dental Implants</subject><subject>Dental prosthetics</subject><subject>Diagnostic Radiology</subject><subject>Electrode potentials</subject><subject>Evaluation</subject><subject>Female</subject><subject>Humans</subject><subject>Image quality</subject><subject>Imaging</subject><subject>Impairment</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Iterative methods</subject><subject>Maxillofacial</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metals</subject><subject>Middle Aged</subject><subject>Neuroradiology</subject><subject>Photons</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Soft tissues</subject><subject>Tissues</subject><subject>Tomography</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Ultrasound</subject><issn>1432-1084</issn><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ksFu1DAQhiMEoqXwAhyQJS5cAmM7WTsnhFZAK1XiAmfLa0-yrhI72M6ifSJeE6dbSuHAyaOZb_7x2H9VvaTwlgKIdwmAc6iB8Ro60UF9fFSd04azmoJsHj-Iz6pnKd0AQEcb8bQ644LJRgo4r35uw7Rz3vmBHFzMix7JFHxAj3HA7Axxkx7WqvaWuIxRZ3dAMmEupI7Z9dpkEtEuJrvgifOkdzHlelgl9G1u3occfG3C4vMqZcI0LxktyWEKQ9Tz_khCT-ZCo8-J_HB5T2wJywg3zaMuyefVk16PCV_cnRfVt08fv24v6-svn6-2H65r04g211RvrOC2kz2KTUs3aMBKLak1SHthsOm7prfArOGdMQyQd1xTy9pdbyTQHb-o3p9052U3YWnzOepRzbG8QzyqoJ36u-LdXg3hoCi0naRsUxTe3CnE8H3BlNXkksGxrIFhSYpJxptOtmJFX_-D3oQl-rJfoWRR5O2GFYqdKBNDShH7-9tQUKsR1MkIqhhB3RpBHUvTq4d73Lf8_vkC8BOQSskPGP_M_o_sL_1xxh4</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Patzer, Theresa Sophie</creator><creator>Kunz, Andreas Steven</creator><creator>Huflage, Henner</creator><creator>Gruschwitz, Philipp</creator><creator>Pannenbecker, Pauline</creator><creator>Afat, Saif</creator><creator>Herrmann, Judith</creator><creator>Petritsch, Bernhard</creator><creator>Bley, Thorsten Alexander</creator><creator>Grunz, Jan-Peter</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6169-1552</orcidid></search><sort><creationdate>20231101</creationdate><title>Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants</title><author>Patzer, Theresa Sophie ; Kunz, Andreas Steven ; Huflage, Henner ; Gruschwitz, Philipp ; Pannenbecker, Pauline ; Afat, Saif ; Herrmann, Judith ; Petritsch, Bernhard ; Bley, Thorsten Alexander ; Grunz, Jan-Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-1a6d73d98fe76516ec0d8a81dce1f7ce4f94fd02dc39cc20e393a1d25bfc801b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Bioaccumulation</topic><topic>Computed Tomography</topic><topic>Dental Implants</topic><topic>Dental prosthetics</topic><topic>Diagnostic Radiology</topic><topic>Electrode potentials</topic><topic>Evaluation</topic><topic>Female</topic><topic>Humans</topic><topic>Image quality</topic><topic>Imaging</topic><topic>Impairment</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Iterative methods</topic><topic>Maxillofacial</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metals</topic><topic>Middle Aged</topic><topic>Neuroradiology</topic><topic>Photons</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Soft tissues</topic><topic>Tissues</topic><topic>Tomography</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patzer, Theresa Sophie</creatorcontrib><creatorcontrib>Kunz, Andreas Steven</creatorcontrib><creatorcontrib>Huflage, Henner</creatorcontrib><creatorcontrib>Gruschwitz, Philipp</creatorcontrib><creatorcontrib>Pannenbecker, Pauline</creatorcontrib><creatorcontrib>Afat, Saif</creatorcontrib><creatorcontrib>Herrmann, Judith</creatorcontrib><creatorcontrib>Petritsch, Bernhard</creatorcontrib><creatorcontrib>Bley, Thorsten Alexander</creatorcontrib><creatorcontrib>Grunz, Jan-Peter</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patzer, Theresa Sophie</au><au>Kunz, Andreas Steven</au><au>Huflage, Henner</au><au>Gruschwitz, Philipp</au><au>Pannenbecker, Pauline</au><au>Afat, Saif</au><au>Herrmann, Judith</au><au>Petritsch, Bernhard</au><au>Bley, Thorsten Alexander</au><au>Grunz, Jan-Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>33</volume><issue>11</issue><spage>7818</spage><epage>7829</epage><pages>7818-7829</pages><issn>1432-1084</issn><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objectives
While established for energy-integrating detector computed tomography (CT), the effect of virtual monoenergetic imaging (VMI) and iterative metal artifact reduction (iMAR) in photon-counting detector (PCD) CT lacks thorough investigation. This study evaluates VMI, iMAR, and combinations thereof in PCD-CT of patients with dental implants.
Material and methods
In 50 patients (25 women; mean age 62.0 ± 9.9 years), polychromatic 120 kVp imaging (T3D), VMI, T3D
iMAR
, and VMI
iMAR
were compared. VMIs were reconstructed at 40, 70, 110, 150, and 190 keV. Artifact reduction was assessed by attenuation and noise measurements in the most hyper- and hypodense artifacts, as well as in artifact-impaired soft tissue of the mouth floor. Three readers subjectively evaluated artifact extent and soft tissue interpretability. Furthermore, new artifacts through overcorrection were assessed.
Results
iMAR reduced hyper-/hypodense artifacts (T3D 1305.0/−1418.4 versus T3D
iMAR
103.2/−46.9 HU), soft tissue impairment (106.7 versus 39.7 HU), and image noise (16.9 versus 5.2 HU) compared to non-iMAR datasets (
p
≤ 0.001). VMI
iMAR
≥ 110 keV subjectively enhanced artifact reduction over T3D
iMAR
(
p
≤ 0.023). Without iMAR, VMI displayed no measurable artifact reduction (
p
≥ 0.186) and facilitated no significant denoising over T3D (
p
≥ 0.366). However, VMI ≥ 110 keV reduced soft tissue impairment (
p
≤ 0.009). VMI
iMAR
≥ 110 keV resulted in less overcorrection than T3D
iMAR
(
p
≤ 0.001). Inter-reader reliability was moderate/good for hyperdense (0.707), hypodense (0.802), and soft tissue artifacts (0.804).
Conclusion
While VMI alone holds minimal metal artifact reduction potential, iMAR post-processing enabled substantial reduction of hyperdense and hypodense artifacts. The combination of VMI ≥ 110 keV and iMAR resulted in the least extensive metal artifacts.
Clinical relevance
Combining iMAR with VMI represents a potent tool for maxillofacial PCD-CT with dental implants achieving substantial artifact reduction and high image quality.
Key Points
• Post-processing of photon-counting CT scans with an iterative metal artifact reduction algorithm substantially reduces hyperdense and hypodense artifacts arising from dental implants.
• Virtual monoenergetic images presented only minimal metal artifact reduction potential.
• The combination of both provided a considerable benefit in subjective analysis compared to iterative metal artifact reduction alone.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37284870</pmid><doi>10.1007/s00330-023-09790-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6169-1552</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-1084 |
ispartof | European radiology, 2023-11, Vol.33 (11), p.7818-7829 |
issn | 1432-1084 0938-7994 1432-1084 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10598126 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Aged Algorithms Bioaccumulation Computed Tomography Dental Implants Dental prosthetics Diagnostic Radiology Electrode potentials Evaluation Female Humans Image quality Imaging Impairment Internal Medicine Interventional Radiology Iterative methods Maxillofacial Medical imaging Medicine Medicine & Public Health Metals Middle Aged Neuroradiology Photons Radiology Reproducibility of Results Soft tissues Tissues Tomography Tomography, X-Ray Computed - methods Ultrasound |
title | Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20virtual%20monoenergetic%20imaging%20and%20iterative%20metal%20artifact%20reduction%20in%20first-generation%20photon-counting%20computed%20tomography%20of%20patients%20with%20dental%20implants&rft.jtitle=European%20radiology&rft.au=Patzer,%20Theresa%20Sophie&rft.date=2023-11-01&rft.volume=33&rft.issue=11&rft.spage=7818&rft.epage=7829&rft.pages=7818-7829&rft.issn=1432-1084&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-023-09790-y&rft_dat=%3Cproquest_pubme%3E2881053562%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881053562&rft_id=info:pmid/37284870&rfr_iscdi=true |