A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines
Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2024-03, Vol.42 (3), p.510-517 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 517 |
---|---|
container_issue | 3 |
container_start_page | 510 |
container_title | Nature biotechnology |
container_volume | 42 |
creator | vander Straeten, Aurélien Sarmadi, Morteza Daristotle, John L. Kanelli, Maria Tostanoski, Lisa H. Collins, Joe Pardeshi, Apurva Han, Jooli Varshney, Dhruv Eshaghi, Behnaz Garcia, Johnny Forster, Timothy A. Li, Gary Menon, Nandita Pyon, Sydney L. Zhang, Linzixuan Jacob-Dolan, Catherine Powers, Olivia C. Hall, Kevin Alsaiari, Shahad K. Wolf, Morris Tibbitt, Mark W. Farra, Robert Barouch, Dan H. Langer, Robert Jaklenec, Ana |
description | Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration.
Automated fabrication of microneedle patch mRNA vaccines for COVID-19 may improve vaccine access. |
doi_str_mv | 10.1038/s41587-023-01774-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10593912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956984647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-6aaae226d95faa2146d7b2c46fe8f126f009ab96e975a5596afc7d9621ad7d613</originalsourceid><addsrcrecordid>eNp9kUtLxDAQx4Movr-AByl48VLNpMmkOcmyPkEURL2GbDvVSh-adAX99GZd3wdPCcxv_pnJj7Et4HvAs3w_SFC5TrnIUg5ay_R1ga2CkpgCGlyMdz4rg8IVthbCA-ccJeIyW8k0NyqTepUdjZK2LnzfEZUNJc-uKOqOkkdfdwP5pOp9MtyTb_swuEkExpe3Z4cpmKS9uhh94mGDLVWuCbT5ca6zm-Oj6_Fpen55cjYenaeF1GpI0TlHQmBpVOWcAImlnohCYkV5BQIrzo2bGCSjlVPKoKsKXRoU4EpdImTr7GCe-zidtFQW1A3eNTZO2zr_YntX29-Vrr63d_2zBa5MZkDEhN2PBN8_TSkMtq1DQU3jOuqnwYqcI9cAuYzozh_0oZ_6Lu5nhVFocolSR0rMqfiJIXiqvqYBbmea7FyTjZrsuyb7Gpu2f-7x1fLpJQLZHAgzE3fkv9_-J_YNHD-dwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956984647</pqid></control><display><type>article</type><title>A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>vander Straeten, Aurélien ; Sarmadi, Morteza ; Daristotle, John L. ; Kanelli, Maria ; Tostanoski, Lisa H. ; Collins, Joe ; Pardeshi, Apurva ; Han, Jooli ; Varshney, Dhruv ; Eshaghi, Behnaz ; Garcia, Johnny ; Forster, Timothy A. ; Li, Gary ; Menon, Nandita ; Pyon, Sydney L. ; Zhang, Linzixuan ; Jacob-Dolan, Catherine ; Powers, Olivia C. ; Hall, Kevin ; Alsaiari, Shahad K. ; Wolf, Morris ; Tibbitt, Mark W. ; Farra, Robert ; Barouch, Dan H. ; Langer, Robert ; Jaklenec, Ana</creator><creatorcontrib>vander Straeten, Aurélien ; Sarmadi, Morteza ; Daristotle, John L. ; Kanelli, Maria ; Tostanoski, Lisa H. ; Collins, Joe ; Pardeshi, Apurva ; Han, Jooli ; Varshney, Dhruv ; Eshaghi, Behnaz ; Garcia, Johnny ; Forster, Timothy A. ; Li, Gary ; Menon, Nandita ; Pyon, Sydney L. ; Zhang, Linzixuan ; Jacob-Dolan, Catherine ; Powers, Olivia C. ; Hall, Kevin ; Alsaiari, Shahad K. ; Wolf, Morris ; Tibbitt, Mark W. ; Farra, Robert ; Barouch, Dan H. ; Langer, Robert ; Jaklenec, Ana</creatorcontrib><description>Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration.
Automated fabrication of microneedle patch mRNA vaccines for COVID-19 may improve vaccine access.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-023-01774-z</identifier><identifier>PMID: 37095347</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/250/590 ; 639/166/985 ; 639/925/350/354 ; 692/699/255/2514 ; 706/134 ; Agriculture ; Automation ; Bioinformatics ; Biological activity ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Coronaviruses ; COVID-19 ; COVID-19 vaccines ; Fabrication ; Formulations ; Immune response ; Immunization ; Life Sciences ; Lipids ; mRNA ; mRNA vaccines ; Nanoparticles ; Needles ; Polymer blends ; Polymers ; Room temperature ; Severe acute respiratory syndrome coronavirus 2 ; Spike protein ; Vaccines ; Viral diseases</subject><ispartof>Nature biotechnology, 2024-03, Vol.42 (3), p.510-517</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-6aaae226d95faa2146d7b2c46fe8f126f009ab96e975a5596afc7d9621ad7d613</citedby><cites>FETCH-LOGICAL-c475t-6aaae226d95faa2146d7b2c46fe8f126f009ab96e975a5596afc7d9621ad7d613</cites><orcidid>0000-0001-6641-0342 ; 0000-0001-9255-5684 ; 0000-0001-7742-2381 ; 0000-0002-1328-1345 ; 0000-0003-4255-0492 ; 0000-0001-6096-0538 ; 0000-0001-5127-4659 ; 0000-0002-0031-8866 ; 0000-0002-5435-1987 ; 0000-0002-4917-7187 ; 0000-0002-3523-5390 ; 0000-0001-7163-4906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37095347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>vander Straeten, Aurélien</creatorcontrib><creatorcontrib>Sarmadi, Morteza</creatorcontrib><creatorcontrib>Daristotle, John L.</creatorcontrib><creatorcontrib>Kanelli, Maria</creatorcontrib><creatorcontrib>Tostanoski, Lisa H.</creatorcontrib><creatorcontrib>Collins, Joe</creatorcontrib><creatorcontrib>Pardeshi, Apurva</creatorcontrib><creatorcontrib>Han, Jooli</creatorcontrib><creatorcontrib>Varshney, Dhruv</creatorcontrib><creatorcontrib>Eshaghi, Behnaz</creatorcontrib><creatorcontrib>Garcia, Johnny</creatorcontrib><creatorcontrib>Forster, Timothy A.</creatorcontrib><creatorcontrib>Li, Gary</creatorcontrib><creatorcontrib>Menon, Nandita</creatorcontrib><creatorcontrib>Pyon, Sydney L.</creatorcontrib><creatorcontrib>Zhang, Linzixuan</creatorcontrib><creatorcontrib>Jacob-Dolan, Catherine</creatorcontrib><creatorcontrib>Powers, Olivia C.</creatorcontrib><creatorcontrib>Hall, Kevin</creatorcontrib><creatorcontrib>Alsaiari, Shahad K.</creatorcontrib><creatorcontrib>Wolf, Morris</creatorcontrib><creatorcontrib>Tibbitt, Mark W.</creatorcontrib><creatorcontrib>Farra, Robert</creatorcontrib><creatorcontrib>Barouch, Dan H.</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Jaklenec, Ana</creatorcontrib><title>A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration.
Automated fabrication of microneedle patch mRNA vaccines for COVID-19 may improve vaccine access.</description><subject>631/250/590</subject><subject>639/166/985</subject><subject>639/925/350/354</subject><subject>692/699/255/2514</subject><subject>706/134</subject><subject>Agriculture</subject><subject>Automation</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 vaccines</subject><subject>Fabrication</subject><subject>Formulations</subject><subject>Immune response</subject><subject>Immunization</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>mRNA</subject><subject>mRNA vaccines</subject><subject>Nanoparticles</subject><subject>Needles</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Spike protein</subject><subject>Vaccines</subject><subject>Viral diseases</subject><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLxDAQx4Movr-AByl48VLNpMmkOcmyPkEURL2GbDvVSh-adAX99GZd3wdPCcxv_pnJj7Et4HvAs3w_SFC5TrnIUg5ay_R1ga2CkpgCGlyMdz4rg8IVthbCA-ccJeIyW8k0NyqTepUdjZK2LnzfEZUNJc-uKOqOkkdfdwP5pOp9MtyTb_swuEkExpe3Z4cpmKS9uhh94mGDLVWuCbT5ca6zm-Oj6_Fpen55cjYenaeF1GpI0TlHQmBpVOWcAImlnohCYkV5BQIrzo2bGCSjlVPKoKsKXRoU4EpdImTr7GCe-zidtFQW1A3eNTZO2zr_YntX29-Vrr63d_2zBa5MZkDEhN2PBN8_TSkMtq1DQU3jOuqnwYqcI9cAuYzozh_0oZ_6Lu5nhVFocolSR0rMqfiJIXiqvqYBbmea7FyTjZrsuyb7Gpu2f-7x1fLpJQLZHAgzE3fkv9_-J_YNHD-dwA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>vander Straeten, Aurélien</creator><creator>Sarmadi, Morteza</creator><creator>Daristotle, John L.</creator><creator>Kanelli, Maria</creator><creator>Tostanoski, Lisa H.</creator><creator>Collins, Joe</creator><creator>Pardeshi, Apurva</creator><creator>Han, Jooli</creator><creator>Varshney, Dhruv</creator><creator>Eshaghi, Behnaz</creator><creator>Garcia, Johnny</creator><creator>Forster, Timothy A.</creator><creator>Li, Gary</creator><creator>Menon, Nandita</creator><creator>Pyon, Sydney L.</creator><creator>Zhang, Linzixuan</creator><creator>Jacob-Dolan, Catherine</creator><creator>Powers, Olivia C.</creator><creator>Hall, Kevin</creator><creator>Alsaiari, Shahad K.</creator><creator>Wolf, Morris</creator><creator>Tibbitt, Mark W.</creator><creator>Farra, Robert</creator><creator>Barouch, Dan H.</creator><creator>Langer, Robert</creator><creator>Jaklenec, Ana</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6641-0342</orcidid><orcidid>https://orcid.org/0000-0001-9255-5684</orcidid><orcidid>https://orcid.org/0000-0001-7742-2381</orcidid><orcidid>https://orcid.org/0000-0002-1328-1345</orcidid><orcidid>https://orcid.org/0000-0003-4255-0492</orcidid><orcidid>https://orcid.org/0000-0001-6096-0538</orcidid><orcidid>https://orcid.org/0000-0001-5127-4659</orcidid><orcidid>https://orcid.org/0000-0002-0031-8866</orcidid><orcidid>https://orcid.org/0000-0002-5435-1987</orcidid><orcidid>https://orcid.org/0000-0002-4917-7187</orcidid><orcidid>https://orcid.org/0000-0002-3523-5390</orcidid><orcidid>https://orcid.org/0000-0001-7163-4906</orcidid></search><sort><creationdate>20240301</creationdate><title>A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines</title><author>vander Straeten, Aurélien ; Sarmadi, Morteza ; Daristotle, John L. ; Kanelli, Maria ; Tostanoski, Lisa H. ; Collins, Joe ; Pardeshi, Apurva ; Han, Jooli ; Varshney, Dhruv ; Eshaghi, Behnaz ; Garcia, Johnny ; Forster, Timothy A. ; Li, Gary ; Menon, Nandita ; Pyon, Sydney L. ; Zhang, Linzixuan ; Jacob-Dolan, Catherine ; Powers, Olivia C. ; Hall, Kevin ; Alsaiari, Shahad K. ; Wolf, Morris ; Tibbitt, Mark W. ; Farra, Robert ; Barouch, Dan H. ; Langer, Robert ; Jaklenec, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-6aaae226d95faa2146d7b2c46fe8f126f009ab96e975a5596afc7d9621ad7d613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/250/590</topic><topic>639/166/985</topic><topic>639/925/350/354</topic><topic>692/699/255/2514</topic><topic>706/134</topic><topic>Agriculture</topic><topic>Automation</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 vaccines</topic><topic>Fabrication</topic><topic>Formulations</topic><topic>Immune response</topic><topic>Immunization</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>mRNA</topic><topic>mRNA vaccines</topic><topic>Nanoparticles</topic><topic>Needles</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Spike protein</topic><topic>Vaccines</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>vander Straeten, Aurélien</creatorcontrib><creatorcontrib>Sarmadi, Morteza</creatorcontrib><creatorcontrib>Daristotle, John L.</creatorcontrib><creatorcontrib>Kanelli, Maria</creatorcontrib><creatorcontrib>Tostanoski, Lisa H.</creatorcontrib><creatorcontrib>Collins, Joe</creatorcontrib><creatorcontrib>Pardeshi, Apurva</creatorcontrib><creatorcontrib>Han, Jooli</creatorcontrib><creatorcontrib>Varshney, Dhruv</creatorcontrib><creatorcontrib>Eshaghi, Behnaz</creatorcontrib><creatorcontrib>Garcia, Johnny</creatorcontrib><creatorcontrib>Forster, Timothy A.</creatorcontrib><creatorcontrib>Li, Gary</creatorcontrib><creatorcontrib>Menon, Nandita</creatorcontrib><creatorcontrib>Pyon, Sydney L.</creatorcontrib><creatorcontrib>Zhang, Linzixuan</creatorcontrib><creatorcontrib>Jacob-Dolan, Catherine</creatorcontrib><creatorcontrib>Powers, Olivia C.</creatorcontrib><creatorcontrib>Hall, Kevin</creatorcontrib><creatorcontrib>Alsaiari, Shahad K.</creatorcontrib><creatorcontrib>Wolf, Morris</creatorcontrib><creatorcontrib>Tibbitt, Mark W.</creatorcontrib><creatorcontrib>Farra, Robert</creatorcontrib><creatorcontrib>Barouch, Dan H.</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Jaklenec, Ana</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>vander Straeten, Aurélien</au><au>Sarmadi, Morteza</au><au>Daristotle, John L.</au><au>Kanelli, Maria</au><au>Tostanoski, Lisa H.</au><au>Collins, Joe</au><au>Pardeshi, Apurva</au><au>Han, Jooli</au><au>Varshney, Dhruv</au><au>Eshaghi, Behnaz</au><au>Garcia, Johnny</au><au>Forster, Timothy A.</au><au>Li, Gary</au><au>Menon, Nandita</au><au>Pyon, Sydney L.</au><au>Zhang, Linzixuan</au><au>Jacob-Dolan, Catherine</au><au>Powers, Olivia C.</au><au>Hall, Kevin</au><au>Alsaiari, Shahad K.</au><au>Wolf, Morris</au><au>Tibbitt, Mark W.</au><au>Farra, Robert</au><au>Barouch, Dan H.</au><au>Langer, Robert</au><au>Jaklenec, Ana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>42</volume><issue>3</issue><spage>510</spage><epage>517</epage><pages>510-517</pages><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration.
Automated fabrication of microneedle patch mRNA vaccines for COVID-19 may improve vaccine access.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37095347</pmid><doi>10.1038/s41587-023-01774-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6641-0342</orcidid><orcidid>https://orcid.org/0000-0001-9255-5684</orcidid><orcidid>https://orcid.org/0000-0001-7742-2381</orcidid><orcidid>https://orcid.org/0000-0002-1328-1345</orcidid><orcidid>https://orcid.org/0000-0003-4255-0492</orcidid><orcidid>https://orcid.org/0000-0001-6096-0538</orcidid><orcidid>https://orcid.org/0000-0001-5127-4659</orcidid><orcidid>https://orcid.org/0000-0002-0031-8866</orcidid><orcidid>https://orcid.org/0000-0002-5435-1987</orcidid><orcidid>https://orcid.org/0000-0002-4917-7187</orcidid><orcidid>https://orcid.org/0000-0002-3523-5390</orcidid><orcidid>https://orcid.org/0000-0001-7163-4906</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2024-03, Vol.42 (3), p.510-517 |
issn | 1087-0156 1546-1696 1546-1696 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10593912 |
source | Nature; Alma/SFX Local Collection |
subjects | 631/250/590 639/166/985 639/925/350/354 692/699/255/2514 706/134 Agriculture Automation Bioinformatics Biological activity Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Coronaviruses COVID-19 COVID-19 vaccines Fabrication Formulations Immune response Immunization Life Sciences Lipids mRNA mRNA vaccines Nanoparticles Needles Polymer blends Polymers Room temperature Severe acute respiratory syndrome coronavirus 2 Spike protein Vaccines Viral diseases |
title | A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microneedle%20vaccine%20printer%20for%20thermostable%20COVID-19%20mRNA%20vaccines&rft.jtitle=Nature%20biotechnology&rft.au=vander%20Straeten,%20Aur%C3%A9lien&rft.date=2024-03-01&rft.volume=42&rft.issue=3&rft.spage=510&rft.epage=517&rft.pages=510-517&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-023-01774-z&rft_dat=%3Cproquest_pubme%3E2956984647%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956984647&rft_id=info:pmid/37095347&rfr_iscdi=true |