A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines

Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2024-03, Vol.42 (3), p.510-517
Hauptverfasser: vander Straeten, Aurélien, Sarmadi, Morteza, Daristotle, John L., Kanelli, Maria, Tostanoski, Lisa H., Collins, Joe, Pardeshi, Apurva, Han, Jooli, Varshney, Dhruv, Eshaghi, Behnaz, Garcia, Johnny, Forster, Timothy A., Li, Gary, Menon, Nandita, Pyon, Sydney L., Zhang, Linzixuan, Jacob-Dolan, Catherine, Powers, Olivia C., Hall, Kevin, Alsaiari, Shahad K., Wolf, Morris, Tibbitt, Mark W., Farra, Robert, Barouch, Dan H., Langer, Robert, Jaklenec, Ana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 517
container_issue 3
container_start_page 510
container_title Nature biotechnology
container_volume 42
creator vander Straeten, Aurélien
Sarmadi, Morteza
Daristotle, John L.
Kanelli, Maria
Tostanoski, Lisa H.
Collins, Joe
Pardeshi, Apurva
Han, Jooli
Varshney, Dhruv
Eshaghi, Behnaz
Garcia, Johnny
Forster, Timothy A.
Li, Gary
Menon, Nandita
Pyon, Sydney L.
Zhang, Linzixuan
Jacob-Dolan, Catherine
Powers, Olivia C.
Hall, Kevin
Alsaiari, Shahad K.
Wolf, Morris
Tibbitt, Mark W.
Farra, Robert
Barouch, Dan H.
Langer, Robert
Jaklenec, Ana
description Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration. Automated fabrication of microneedle patch mRNA vaccines for COVID-19 may improve vaccine access.
doi_str_mv 10.1038/s41587-023-01774-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10593912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956984647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-6aaae226d95faa2146d7b2c46fe8f126f009ab96e975a5596afc7d9621ad7d613</originalsourceid><addsrcrecordid>eNp9kUtLxDAQx4Movr-AByl48VLNpMmkOcmyPkEURL2GbDvVSh-adAX99GZd3wdPCcxv_pnJj7Et4HvAs3w_SFC5TrnIUg5ay_R1ga2CkpgCGlyMdz4rg8IVthbCA-ccJeIyW8k0NyqTepUdjZK2LnzfEZUNJc-uKOqOkkdfdwP5pOp9MtyTb_swuEkExpe3Z4cpmKS9uhh94mGDLVWuCbT5ca6zm-Oj6_Fpen55cjYenaeF1GpI0TlHQmBpVOWcAImlnohCYkV5BQIrzo2bGCSjlVPKoKsKXRoU4EpdImTr7GCe-zidtFQW1A3eNTZO2zr_YntX29-Vrr63d_2zBa5MZkDEhN2PBN8_TSkMtq1DQU3jOuqnwYqcI9cAuYzozh_0oZ_6Lu5nhVFocolSR0rMqfiJIXiqvqYBbmea7FyTjZrsuyb7Gpu2f-7x1fLpJQLZHAgzE3fkv9_-J_YNHD-dwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956984647</pqid></control><display><type>article</type><title>A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>vander Straeten, Aurélien ; Sarmadi, Morteza ; Daristotle, John L. ; Kanelli, Maria ; Tostanoski, Lisa H. ; Collins, Joe ; Pardeshi, Apurva ; Han, Jooli ; Varshney, Dhruv ; Eshaghi, Behnaz ; Garcia, Johnny ; Forster, Timothy A. ; Li, Gary ; Menon, Nandita ; Pyon, Sydney L. ; Zhang, Linzixuan ; Jacob-Dolan, Catherine ; Powers, Olivia C. ; Hall, Kevin ; Alsaiari, Shahad K. ; Wolf, Morris ; Tibbitt, Mark W. ; Farra, Robert ; Barouch, Dan H. ; Langer, Robert ; Jaklenec, Ana</creator><creatorcontrib>vander Straeten, Aurélien ; Sarmadi, Morteza ; Daristotle, John L. ; Kanelli, Maria ; Tostanoski, Lisa H. ; Collins, Joe ; Pardeshi, Apurva ; Han, Jooli ; Varshney, Dhruv ; Eshaghi, Behnaz ; Garcia, Johnny ; Forster, Timothy A. ; Li, Gary ; Menon, Nandita ; Pyon, Sydney L. ; Zhang, Linzixuan ; Jacob-Dolan, Catherine ; Powers, Olivia C. ; Hall, Kevin ; Alsaiari, Shahad K. ; Wolf, Morris ; Tibbitt, Mark W. ; Farra, Robert ; Barouch, Dan H. ; Langer, Robert ; Jaklenec, Ana</creatorcontrib><description>Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration. Automated fabrication of microneedle patch mRNA vaccines for COVID-19 may improve vaccine access.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-023-01774-z</identifier><identifier>PMID: 37095347</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/250/590 ; 639/166/985 ; 639/925/350/354 ; 692/699/255/2514 ; 706/134 ; Agriculture ; Automation ; Bioinformatics ; Biological activity ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Coronaviruses ; COVID-19 ; COVID-19 vaccines ; Fabrication ; Formulations ; Immune response ; Immunization ; Life Sciences ; Lipids ; mRNA ; mRNA vaccines ; Nanoparticles ; Needles ; Polymer blends ; Polymers ; Room temperature ; Severe acute respiratory syndrome coronavirus 2 ; Spike protein ; Vaccines ; Viral diseases</subject><ispartof>Nature biotechnology, 2024-03, Vol.42 (3), p.510-517</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-6aaae226d95faa2146d7b2c46fe8f126f009ab96e975a5596afc7d9621ad7d613</citedby><cites>FETCH-LOGICAL-c475t-6aaae226d95faa2146d7b2c46fe8f126f009ab96e975a5596afc7d9621ad7d613</cites><orcidid>0000-0001-6641-0342 ; 0000-0001-9255-5684 ; 0000-0001-7742-2381 ; 0000-0002-1328-1345 ; 0000-0003-4255-0492 ; 0000-0001-6096-0538 ; 0000-0001-5127-4659 ; 0000-0002-0031-8866 ; 0000-0002-5435-1987 ; 0000-0002-4917-7187 ; 0000-0002-3523-5390 ; 0000-0001-7163-4906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37095347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>vander Straeten, Aurélien</creatorcontrib><creatorcontrib>Sarmadi, Morteza</creatorcontrib><creatorcontrib>Daristotle, John L.</creatorcontrib><creatorcontrib>Kanelli, Maria</creatorcontrib><creatorcontrib>Tostanoski, Lisa H.</creatorcontrib><creatorcontrib>Collins, Joe</creatorcontrib><creatorcontrib>Pardeshi, Apurva</creatorcontrib><creatorcontrib>Han, Jooli</creatorcontrib><creatorcontrib>Varshney, Dhruv</creatorcontrib><creatorcontrib>Eshaghi, Behnaz</creatorcontrib><creatorcontrib>Garcia, Johnny</creatorcontrib><creatorcontrib>Forster, Timothy A.</creatorcontrib><creatorcontrib>Li, Gary</creatorcontrib><creatorcontrib>Menon, Nandita</creatorcontrib><creatorcontrib>Pyon, Sydney L.</creatorcontrib><creatorcontrib>Zhang, Linzixuan</creatorcontrib><creatorcontrib>Jacob-Dolan, Catherine</creatorcontrib><creatorcontrib>Powers, Olivia C.</creatorcontrib><creatorcontrib>Hall, Kevin</creatorcontrib><creatorcontrib>Alsaiari, Shahad K.</creatorcontrib><creatorcontrib>Wolf, Morris</creatorcontrib><creatorcontrib>Tibbitt, Mark W.</creatorcontrib><creatorcontrib>Farra, Robert</creatorcontrib><creatorcontrib>Barouch, Dan H.</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Jaklenec, Ana</creatorcontrib><title>A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration. Automated fabrication of microneedle patch mRNA vaccines for COVID-19 may improve vaccine access.</description><subject>631/250/590</subject><subject>639/166/985</subject><subject>639/925/350/354</subject><subject>692/699/255/2514</subject><subject>706/134</subject><subject>Agriculture</subject><subject>Automation</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 vaccines</subject><subject>Fabrication</subject><subject>Formulations</subject><subject>Immune response</subject><subject>Immunization</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>mRNA</subject><subject>mRNA vaccines</subject><subject>Nanoparticles</subject><subject>Needles</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Spike protein</subject><subject>Vaccines</subject><subject>Viral diseases</subject><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLxDAQx4Movr-AByl48VLNpMmkOcmyPkEURL2GbDvVSh-adAX99GZd3wdPCcxv_pnJj7Et4HvAs3w_SFC5TrnIUg5ay_R1ga2CkpgCGlyMdz4rg8IVthbCA-ccJeIyW8k0NyqTepUdjZK2LnzfEZUNJc-uKOqOkkdfdwP5pOp9MtyTb_swuEkExpe3Z4cpmKS9uhh94mGDLVWuCbT5ca6zm-Oj6_Fpen55cjYenaeF1GpI0TlHQmBpVOWcAImlnohCYkV5BQIrzo2bGCSjlVPKoKsKXRoU4EpdImTr7GCe-zidtFQW1A3eNTZO2zr_YntX29-Vrr63d_2zBa5MZkDEhN2PBN8_TSkMtq1DQU3jOuqnwYqcI9cAuYzozh_0oZ_6Lu5nhVFocolSR0rMqfiJIXiqvqYBbmea7FyTjZrsuyb7Gpu2f-7x1fLpJQLZHAgzE3fkv9_-J_YNHD-dwA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>vander Straeten, Aurélien</creator><creator>Sarmadi, Morteza</creator><creator>Daristotle, John L.</creator><creator>Kanelli, Maria</creator><creator>Tostanoski, Lisa H.</creator><creator>Collins, Joe</creator><creator>Pardeshi, Apurva</creator><creator>Han, Jooli</creator><creator>Varshney, Dhruv</creator><creator>Eshaghi, Behnaz</creator><creator>Garcia, Johnny</creator><creator>Forster, Timothy A.</creator><creator>Li, Gary</creator><creator>Menon, Nandita</creator><creator>Pyon, Sydney L.</creator><creator>Zhang, Linzixuan</creator><creator>Jacob-Dolan, Catherine</creator><creator>Powers, Olivia C.</creator><creator>Hall, Kevin</creator><creator>Alsaiari, Shahad K.</creator><creator>Wolf, Morris</creator><creator>Tibbitt, Mark W.</creator><creator>Farra, Robert</creator><creator>Barouch, Dan H.</creator><creator>Langer, Robert</creator><creator>Jaklenec, Ana</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6641-0342</orcidid><orcidid>https://orcid.org/0000-0001-9255-5684</orcidid><orcidid>https://orcid.org/0000-0001-7742-2381</orcidid><orcidid>https://orcid.org/0000-0002-1328-1345</orcidid><orcidid>https://orcid.org/0000-0003-4255-0492</orcidid><orcidid>https://orcid.org/0000-0001-6096-0538</orcidid><orcidid>https://orcid.org/0000-0001-5127-4659</orcidid><orcidid>https://orcid.org/0000-0002-0031-8866</orcidid><orcidid>https://orcid.org/0000-0002-5435-1987</orcidid><orcidid>https://orcid.org/0000-0002-4917-7187</orcidid><orcidid>https://orcid.org/0000-0002-3523-5390</orcidid><orcidid>https://orcid.org/0000-0001-7163-4906</orcidid></search><sort><creationdate>20240301</creationdate><title>A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines</title><author>vander Straeten, Aurélien ; Sarmadi, Morteza ; Daristotle, John L. ; Kanelli, Maria ; Tostanoski, Lisa H. ; Collins, Joe ; Pardeshi, Apurva ; Han, Jooli ; Varshney, Dhruv ; Eshaghi, Behnaz ; Garcia, Johnny ; Forster, Timothy A. ; Li, Gary ; Menon, Nandita ; Pyon, Sydney L. ; Zhang, Linzixuan ; Jacob-Dolan, Catherine ; Powers, Olivia C. ; Hall, Kevin ; Alsaiari, Shahad K. ; Wolf, Morris ; Tibbitt, Mark W. ; Farra, Robert ; Barouch, Dan H. ; Langer, Robert ; Jaklenec, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-6aaae226d95faa2146d7b2c46fe8f126f009ab96e975a5596afc7d9621ad7d613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/250/590</topic><topic>639/166/985</topic><topic>639/925/350/354</topic><topic>692/699/255/2514</topic><topic>706/134</topic><topic>Agriculture</topic><topic>Automation</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 vaccines</topic><topic>Fabrication</topic><topic>Formulations</topic><topic>Immune response</topic><topic>Immunization</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>mRNA</topic><topic>mRNA vaccines</topic><topic>Nanoparticles</topic><topic>Needles</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Spike protein</topic><topic>Vaccines</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>vander Straeten, Aurélien</creatorcontrib><creatorcontrib>Sarmadi, Morteza</creatorcontrib><creatorcontrib>Daristotle, John L.</creatorcontrib><creatorcontrib>Kanelli, Maria</creatorcontrib><creatorcontrib>Tostanoski, Lisa H.</creatorcontrib><creatorcontrib>Collins, Joe</creatorcontrib><creatorcontrib>Pardeshi, Apurva</creatorcontrib><creatorcontrib>Han, Jooli</creatorcontrib><creatorcontrib>Varshney, Dhruv</creatorcontrib><creatorcontrib>Eshaghi, Behnaz</creatorcontrib><creatorcontrib>Garcia, Johnny</creatorcontrib><creatorcontrib>Forster, Timothy A.</creatorcontrib><creatorcontrib>Li, Gary</creatorcontrib><creatorcontrib>Menon, Nandita</creatorcontrib><creatorcontrib>Pyon, Sydney L.</creatorcontrib><creatorcontrib>Zhang, Linzixuan</creatorcontrib><creatorcontrib>Jacob-Dolan, Catherine</creatorcontrib><creatorcontrib>Powers, Olivia C.</creatorcontrib><creatorcontrib>Hall, Kevin</creatorcontrib><creatorcontrib>Alsaiari, Shahad K.</creatorcontrib><creatorcontrib>Wolf, Morris</creatorcontrib><creatorcontrib>Tibbitt, Mark W.</creatorcontrib><creatorcontrib>Farra, Robert</creatorcontrib><creatorcontrib>Barouch, Dan H.</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Jaklenec, Ana</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>vander Straeten, Aurélien</au><au>Sarmadi, Morteza</au><au>Daristotle, John L.</au><au>Kanelli, Maria</au><au>Tostanoski, Lisa H.</au><au>Collins, Joe</au><au>Pardeshi, Apurva</au><au>Han, Jooli</au><au>Varshney, Dhruv</au><au>Eshaghi, Behnaz</au><au>Garcia, Johnny</au><au>Forster, Timothy A.</au><au>Li, Gary</au><au>Menon, Nandita</au><au>Pyon, Sydney L.</au><au>Zhang, Linzixuan</au><au>Jacob-Dolan, Catherine</au><au>Powers, Olivia C.</au><au>Hall, Kevin</au><au>Alsaiari, Shahad K.</au><au>Wolf, Morris</au><au>Tibbitt, Mark W.</au><au>Farra, Robert</au><au>Barouch, Dan H.</au><au>Langer, Robert</au><au>Jaklenec, Ana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>42</volume><issue>3</issue><spage>510</spage><epage>517</epage><pages>510-517</pages><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration. Automated fabrication of microneedle patch mRNA vaccines for COVID-19 may improve vaccine access.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37095347</pmid><doi>10.1038/s41587-023-01774-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6641-0342</orcidid><orcidid>https://orcid.org/0000-0001-9255-5684</orcidid><orcidid>https://orcid.org/0000-0001-7742-2381</orcidid><orcidid>https://orcid.org/0000-0002-1328-1345</orcidid><orcidid>https://orcid.org/0000-0003-4255-0492</orcidid><orcidid>https://orcid.org/0000-0001-6096-0538</orcidid><orcidid>https://orcid.org/0000-0001-5127-4659</orcidid><orcidid>https://orcid.org/0000-0002-0031-8866</orcidid><orcidid>https://orcid.org/0000-0002-5435-1987</orcidid><orcidid>https://orcid.org/0000-0002-4917-7187</orcidid><orcidid>https://orcid.org/0000-0002-3523-5390</orcidid><orcidid>https://orcid.org/0000-0001-7163-4906</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2024-03, Vol.42 (3), p.510-517
issn 1087-0156
1546-1696
1546-1696
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10593912
source Nature; Alma/SFX Local Collection
subjects 631/250/590
639/166/985
639/925/350/354
692/699/255/2514
706/134
Agriculture
Automation
Bioinformatics
Biological activity
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Coronaviruses
COVID-19
COVID-19 vaccines
Fabrication
Formulations
Immune response
Immunization
Life Sciences
Lipids
mRNA
mRNA vaccines
Nanoparticles
Needles
Polymer blends
Polymers
Room temperature
Severe acute respiratory syndrome coronavirus 2
Spike protein
Vaccines
Viral diseases
title A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microneedle%20vaccine%20printer%20for%20thermostable%20COVID-19%20mRNA%20vaccines&rft.jtitle=Nature%20biotechnology&rft.au=vander%20Straeten,%20Aur%C3%A9lien&rft.date=2024-03-01&rft.volume=42&rft.issue=3&rft.spage=510&rft.epage=517&rft.pages=510-517&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-023-01774-z&rft_dat=%3Cproquest_pubme%3E2956984647%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956984647&rft_id=info:pmid/37095347&rfr_iscdi=true