An early-life microbiota metabolite protects against obesity by regulating intestinal lipid metabolism
The mechanisms by which the early-life microbiota protects against environmental factors that promote childhood obesity remain largely unknown. Using a mouse model in which young mice are simultaneously exposed to antibiotics and a high-fat (HF) diet, we show that Lactobacillus species, predominant...
Gespeichert in:
Veröffentlicht in: | Cell host & microbe 2023-10, Vol.31 (10), p.1604-1619.e10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1619.e10 |
---|---|
container_issue | 10 |
container_start_page | 1604 |
container_title | Cell host & microbe |
container_volume | 31 |
creator | Shelton, Catherine D. Sing, Elizabeth Mo, Jessica Shealy, Nicolas G. Yoo, Woongjae Thomas, Julia Fitz, Gillian N. Castro, Pollyana R. Hickman, Tara T. Torres, Teresa P. Foegeding, Nora J. Zieba, Jacob K. Calcutt, M. Wade Codreanu, Simona G. Sherrod, Stacy D. McLean, John A. Peck, Sun H. Yang, Fan Markham, Nicholas O. Liu, Min Byndloss, Mariana X. |
description | The mechanisms by which the early-life microbiota protects against environmental factors that promote childhood obesity remain largely unknown. Using a mouse model in which young mice are simultaneously exposed to antibiotics and a high-fat (HF) diet, we show that Lactobacillus species, predominant members of the small intestine (SI) microbiota, regulate intestinal epithelial cells (IECs) to limit diet-induced obesity during early life. A Lactobacillus-derived metabolite, phenyllactic acid (PLA), protects against metabolic dysfunction caused by early-life exposure to antibiotics and a HF diet by increasing the abundance of peroxisome proliferator-activated receptor γ (PPAR-γ) in SI IECs. Therefore, PLA is a microbiota-derived metabolite that activates protective pathways in the small intestinal epithelium to regulate intestinal lipid metabolism and prevent antibiotic-associated obesity during early life.
[Display omitted]
•Early-life exposure to antibiotics and a HF diet exacerbates obesity•Loss of small intestinal Lactobacillaceae leads to increased adiposity•Antibiotics and a HF diet exacerbate adiposity via depletion of intestinal PPAR-γ•Lactobacillus-derived phenyllactic acid protects against antibiotic-induced obesity
Shelton et al. determine that early-life antibiotics exacerbate diet-induced obesity by disrupting interactions between the gut microbiota and the small intestine epithelium. Their study identifies that a Lactobacillus-derived metabolite, phenyllactic acid, regulates intestinal PPAR-γ to limit fat accumulation, revealing a mechanism by which the early-life microbiota protects against metabolic dysfunction. |
doi_str_mv | 10.1016/j.chom.2023.09.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10593428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1931312823003694</els_id><sourcerecordid>2873249909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-1b81d3d3cb1ccdcf8f8b2c184d3d3d8b4252140f79ae8bf3ab6576abd78c43503</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMozkP_gAvJ0k2VedQjAUGGQUdhwI2uQ5K61XObVKVN0gP9703bY6MbV7nknnuSez5C3nDWcsaH99vWP8SlFUzIlumWMfGMXHItu2Zgg37-u-aN5EJdkKuct4z1PRv5S3Ihx1F3vRaXZL5ZKdgUDk3AGeiCPkWHsVi6QLEuBixAdykW8CVTu7G45kKjg4zlQN2BJtjsgy24biiuBXKtbKABdzidLfLyiryYbcjw-um8Jj8-f_p--6W5_3b39fbmvvFdP5SGO8UnOUnvuPeTn9WsnPBcdcfLSblO9IJ3bB61BeVmad3Qj4N106h8J3smr8nHk-9u7xaYPKwl2WB2CRebDiZaNP92Vnwwm_hoOOtrcEJVh3dPDin-3Nd9zILZQwh2hbjPRqhRik5rpqtUnKQ1s5wTzOd3ODNHQmZrjoTMkZBh2lRCdejt3z88j_xBUgUfTgKoOT0iJJM9wuphwlQhmCni__x_AVTEpkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873249909</pqid></control><display><type>article</type><title>An early-life microbiota metabolite protects against obesity by regulating intestinal lipid metabolism</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Shelton, Catherine D. ; Sing, Elizabeth ; Mo, Jessica ; Shealy, Nicolas G. ; Yoo, Woongjae ; Thomas, Julia ; Fitz, Gillian N. ; Castro, Pollyana R. ; Hickman, Tara T. ; Torres, Teresa P. ; Foegeding, Nora J. ; Zieba, Jacob K. ; Calcutt, M. Wade ; Codreanu, Simona G. ; Sherrod, Stacy D. ; McLean, John A. ; Peck, Sun H. ; Yang, Fan ; Markham, Nicholas O. ; Liu, Min ; Byndloss, Mariana X.</creator><creatorcontrib>Shelton, Catherine D. ; Sing, Elizabeth ; Mo, Jessica ; Shealy, Nicolas G. ; Yoo, Woongjae ; Thomas, Julia ; Fitz, Gillian N. ; Castro, Pollyana R. ; Hickman, Tara T. ; Torres, Teresa P. ; Foegeding, Nora J. ; Zieba, Jacob K. ; Calcutt, M. Wade ; Codreanu, Simona G. ; Sherrod, Stacy D. ; McLean, John A. ; Peck, Sun H. ; Yang, Fan ; Markham, Nicholas O. ; Liu, Min ; Byndloss, Mariana X.</creatorcontrib><description>The mechanisms by which the early-life microbiota protects against environmental factors that promote childhood obesity remain largely unknown. Using a mouse model in which young mice are simultaneously exposed to antibiotics and a high-fat (HF) diet, we show that Lactobacillus species, predominant members of the small intestine (SI) microbiota, regulate intestinal epithelial cells (IECs) to limit diet-induced obesity during early life. A Lactobacillus-derived metabolite, phenyllactic acid (PLA), protects against metabolic dysfunction caused by early-life exposure to antibiotics and a HF diet by increasing the abundance of peroxisome proliferator-activated receptor γ (PPAR-γ) in SI IECs. Therefore, PLA is a microbiota-derived metabolite that activates protective pathways in the small intestinal epithelium to regulate intestinal lipid metabolism and prevent antibiotic-associated obesity during early life.
[Display omitted]
•Early-life exposure to antibiotics and a HF diet exacerbates obesity•Loss of small intestinal Lactobacillaceae leads to increased adiposity•Antibiotics and a HF diet exacerbate adiposity via depletion of intestinal PPAR-γ•Lactobacillus-derived phenyllactic acid protects against antibiotic-induced obesity
Shelton et al. determine that early-life antibiotics exacerbate diet-induced obesity by disrupting interactions between the gut microbiota and the small intestine epithelium. Their study identifies that a Lactobacillus-derived metabolite, phenyllactic acid, regulates intestinal PPAR-γ to limit fat accumulation, revealing a mechanism by which the early-life microbiota protects against metabolic dysfunction.</description><identifier>ISSN: 1931-3128</identifier><identifier>ISSN: 1934-6069</identifier><identifier>EISSN: 1934-6069</identifier><identifier>DOI: 10.1016/j.chom.2023.09.002</identifier><identifier>PMID: 37794592</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Anti-Bacterial Agents ; antibiotics ; arachnoid barrier ; brain fibroblasts ; Child ; Diet, High-Fat - adverse effects ; early-life ; Humans ; intestinal epithelium ; Lactobacillus ; leptomeninges ; Lipid Metabolism ; metabolism ; Mice ; Mice, Inbred C57BL ; Microbiota ; obesity ; Pediatric Obesity ; Polyesters ; single-cell RNA sequencing ; tricellular junction</subject><ispartof>Cell host & microbe, 2023-10, Vol.31 (10), p.1604-1619.e10</ispartof><rights>2023 The Author(s)</rights><rights>Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-1b81d3d3cb1ccdcf8f8b2c184d3d3d8b4252140f79ae8bf3ab6576abd78c43503</citedby><cites>FETCH-LOGICAL-c456t-1b81d3d3cb1ccdcf8f8b2c184d3d3d8b4252140f79ae8bf3ab6576abd78c43503</cites><orcidid>0000-0002-2122-4156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chom.2023.09.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37794592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shelton, Catherine D.</creatorcontrib><creatorcontrib>Sing, Elizabeth</creatorcontrib><creatorcontrib>Mo, Jessica</creatorcontrib><creatorcontrib>Shealy, Nicolas G.</creatorcontrib><creatorcontrib>Yoo, Woongjae</creatorcontrib><creatorcontrib>Thomas, Julia</creatorcontrib><creatorcontrib>Fitz, Gillian N.</creatorcontrib><creatorcontrib>Castro, Pollyana R.</creatorcontrib><creatorcontrib>Hickman, Tara T.</creatorcontrib><creatorcontrib>Torres, Teresa P.</creatorcontrib><creatorcontrib>Foegeding, Nora J.</creatorcontrib><creatorcontrib>Zieba, Jacob K.</creatorcontrib><creatorcontrib>Calcutt, M. Wade</creatorcontrib><creatorcontrib>Codreanu, Simona G.</creatorcontrib><creatorcontrib>Sherrod, Stacy D.</creatorcontrib><creatorcontrib>McLean, John A.</creatorcontrib><creatorcontrib>Peck, Sun H.</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Markham, Nicholas O.</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Byndloss, Mariana X.</creatorcontrib><title>An early-life microbiota metabolite protects against obesity by regulating intestinal lipid metabolism</title><title>Cell host & microbe</title><addtitle>Cell Host Microbe</addtitle><description>The mechanisms by which the early-life microbiota protects against environmental factors that promote childhood obesity remain largely unknown. Using a mouse model in which young mice are simultaneously exposed to antibiotics and a high-fat (HF) diet, we show that Lactobacillus species, predominant members of the small intestine (SI) microbiota, regulate intestinal epithelial cells (IECs) to limit diet-induced obesity during early life. A Lactobacillus-derived metabolite, phenyllactic acid (PLA), protects against metabolic dysfunction caused by early-life exposure to antibiotics and a HF diet by increasing the abundance of peroxisome proliferator-activated receptor γ (PPAR-γ) in SI IECs. Therefore, PLA is a microbiota-derived metabolite that activates protective pathways in the small intestinal epithelium to regulate intestinal lipid metabolism and prevent antibiotic-associated obesity during early life.
[Display omitted]
•Early-life exposure to antibiotics and a HF diet exacerbates obesity•Loss of small intestinal Lactobacillaceae leads to increased adiposity•Antibiotics and a HF diet exacerbate adiposity via depletion of intestinal PPAR-γ•Lactobacillus-derived phenyllactic acid protects against antibiotic-induced obesity
Shelton et al. determine that early-life antibiotics exacerbate diet-induced obesity by disrupting interactions between the gut microbiota and the small intestine epithelium. Their study identifies that a Lactobacillus-derived metabolite, phenyllactic acid, regulates intestinal PPAR-γ to limit fat accumulation, revealing a mechanism by which the early-life microbiota protects against metabolic dysfunction.</description><subject>Animals</subject><subject>Anti-Bacterial Agents</subject><subject>antibiotics</subject><subject>arachnoid barrier</subject><subject>brain fibroblasts</subject><subject>Child</subject><subject>Diet, High-Fat - adverse effects</subject><subject>early-life</subject><subject>Humans</subject><subject>intestinal epithelium</subject><subject>Lactobacillus</subject><subject>leptomeninges</subject><subject>Lipid Metabolism</subject><subject>metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microbiota</subject><subject>obesity</subject><subject>Pediatric Obesity</subject><subject>Polyesters</subject><subject>single-cell RNA sequencing</subject><subject>tricellular junction</subject><issn>1931-3128</issn><issn>1934-6069</issn><issn>1934-6069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUuLFDEUhYMozkP_gAvJ0k2VedQjAUGGQUdhwI2uQ5K61XObVKVN0gP9703bY6MbV7nknnuSez5C3nDWcsaH99vWP8SlFUzIlumWMfGMXHItu2Zgg37-u-aN5EJdkKuct4z1PRv5S3Ihx1F3vRaXZL5ZKdgUDk3AGeiCPkWHsVi6QLEuBixAdykW8CVTu7G45kKjg4zlQN2BJtjsgy24biiuBXKtbKABdzidLfLyiryYbcjw-um8Jj8-f_p--6W5_3b39fbmvvFdP5SGO8UnOUnvuPeTn9WsnPBcdcfLSblO9IJ3bB61BeVmad3Qj4N106h8J3smr8nHk-9u7xaYPKwl2WB2CRebDiZaNP92Vnwwm_hoOOtrcEJVh3dPDin-3Nd9zILZQwh2hbjPRqhRik5rpqtUnKQ1s5wTzOd3ODNHQmZrjoTMkZBh2lRCdejt3z88j_xBUgUfTgKoOT0iJJM9wuphwlQhmCni__x_AVTEpkQ</recordid><startdate>20231011</startdate><enddate>20231011</enddate><creator>Shelton, Catherine D.</creator><creator>Sing, Elizabeth</creator><creator>Mo, Jessica</creator><creator>Shealy, Nicolas G.</creator><creator>Yoo, Woongjae</creator><creator>Thomas, Julia</creator><creator>Fitz, Gillian N.</creator><creator>Castro, Pollyana R.</creator><creator>Hickman, Tara T.</creator><creator>Torres, Teresa P.</creator><creator>Foegeding, Nora J.</creator><creator>Zieba, Jacob K.</creator><creator>Calcutt, M. Wade</creator><creator>Codreanu, Simona G.</creator><creator>Sherrod, Stacy D.</creator><creator>McLean, John A.</creator><creator>Peck, Sun H.</creator><creator>Yang, Fan</creator><creator>Markham, Nicholas O.</creator><creator>Liu, Min</creator><creator>Byndloss, Mariana X.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2122-4156</orcidid></search><sort><creationdate>20231011</creationdate><title>An early-life microbiota metabolite protects against obesity by regulating intestinal lipid metabolism</title><author>Shelton, Catherine D. ; Sing, Elizabeth ; Mo, Jessica ; Shealy, Nicolas G. ; Yoo, Woongjae ; Thomas, Julia ; Fitz, Gillian N. ; Castro, Pollyana R. ; Hickman, Tara T. ; Torres, Teresa P. ; Foegeding, Nora J. ; Zieba, Jacob K. ; Calcutt, M. Wade ; Codreanu, Simona G. ; Sherrod, Stacy D. ; McLean, John A. ; Peck, Sun H. ; Yang, Fan ; Markham, Nicholas O. ; Liu, Min ; Byndloss, Mariana X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-1b81d3d3cb1ccdcf8f8b2c184d3d3d8b4252140f79ae8bf3ab6576abd78c43503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents</topic><topic>antibiotics</topic><topic>arachnoid barrier</topic><topic>brain fibroblasts</topic><topic>Child</topic><topic>Diet, High-Fat - adverse effects</topic><topic>early-life</topic><topic>Humans</topic><topic>intestinal epithelium</topic><topic>Lactobacillus</topic><topic>leptomeninges</topic><topic>Lipid Metabolism</topic><topic>metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microbiota</topic><topic>obesity</topic><topic>Pediatric Obesity</topic><topic>Polyesters</topic><topic>single-cell RNA sequencing</topic><topic>tricellular junction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shelton, Catherine D.</creatorcontrib><creatorcontrib>Sing, Elizabeth</creatorcontrib><creatorcontrib>Mo, Jessica</creatorcontrib><creatorcontrib>Shealy, Nicolas G.</creatorcontrib><creatorcontrib>Yoo, Woongjae</creatorcontrib><creatorcontrib>Thomas, Julia</creatorcontrib><creatorcontrib>Fitz, Gillian N.</creatorcontrib><creatorcontrib>Castro, Pollyana R.</creatorcontrib><creatorcontrib>Hickman, Tara T.</creatorcontrib><creatorcontrib>Torres, Teresa P.</creatorcontrib><creatorcontrib>Foegeding, Nora J.</creatorcontrib><creatorcontrib>Zieba, Jacob K.</creatorcontrib><creatorcontrib>Calcutt, M. Wade</creatorcontrib><creatorcontrib>Codreanu, Simona G.</creatorcontrib><creatorcontrib>Sherrod, Stacy D.</creatorcontrib><creatorcontrib>McLean, John A.</creatorcontrib><creatorcontrib>Peck, Sun H.</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Markham, Nicholas O.</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Byndloss, Mariana X.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell host & microbe</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shelton, Catherine D.</au><au>Sing, Elizabeth</au><au>Mo, Jessica</au><au>Shealy, Nicolas G.</au><au>Yoo, Woongjae</au><au>Thomas, Julia</au><au>Fitz, Gillian N.</au><au>Castro, Pollyana R.</au><au>Hickman, Tara T.</au><au>Torres, Teresa P.</au><au>Foegeding, Nora J.</au><au>Zieba, Jacob K.</au><au>Calcutt, M. Wade</au><au>Codreanu, Simona G.</au><au>Sherrod, Stacy D.</au><au>McLean, John A.</au><au>Peck, Sun H.</au><au>Yang, Fan</au><au>Markham, Nicholas O.</au><au>Liu, Min</au><au>Byndloss, Mariana X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An early-life microbiota metabolite protects against obesity by regulating intestinal lipid metabolism</atitle><jtitle>Cell host & microbe</jtitle><addtitle>Cell Host Microbe</addtitle><date>2023-10-11</date><risdate>2023</risdate><volume>31</volume><issue>10</issue><spage>1604</spage><epage>1619.e10</epage><pages>1604-1619.e10</pages><issn>1931-3128</issn><issn>1934-6069</issn><eissn>1934-6069</eissn><abstract>The mechanisms by which the early-life microbiota protects against environmental factors that promote childhood obesity remain largely unknown. Using a mouse model in which young mice are simultaneously exposed to antibiotics and a high-fat (HF) diet, we show that Lactobacillus species, predominant members of the small intestine (SI) microbiota, regulate intestinal epithelial cells (IECs) to limit diet-induced obesity during early life. A Lactobacillus-derived metabolite, phenyllactic acid (PLA), protects against metabolic dysfunction caused by early-life exposure to antibiotics and a HF diet by increasing the abundance of peroxisome proliferator-activated receptor γ (PPAR-γ) in SI IECs. Therefore, PLA is a microbiota-derived metabolite that activates protective pathways in the small intestinal epithelium to regulate intestinal lipid metabolism and prevent antibiotic-associated obesity during early life.
[Display omitted]
•Early-life exposure to antibiotics and a HF diet exacerbates obesity•Loss of small intestinal Lactobacillaceae leads to increased adiposity•Antibiotics and a HF diet exacerbate adiposity via depletion of intestinal PPAR-γ•Lactobacillus-derived phenyllactic acid protects against antibiotic-induced obesity
Shelton et al. determine that early-life antibiotics exacerbate diet-induced obesity by disrupting interactions between the gut microbiota and the small intestine epithelium. Their study identifies that a Lactobacillus-derived metabolite, phenyllactic acid, regulates intestinal PPAR-γ to limit fat accumulation, revealing a mechanism by which the early-life microbiota protects against metabolic dysfunction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37794592</pmid><doi>10.1016/j.chom.2023.09.002</doi><orcidid>https://orcid.org/0000-0002-2122-4156</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-3128 |
ispartof | Cell host & microbe, 2023-10, Vol.31 (10), p.1604-1619.e10 |
issn | 1931-3128 1934-6069 1934-6069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10593428 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | Animals Anti-Bacterial Agents antibiotics arachnoid barrier brain fibroblasts Child Diet, High-Fat - adverse effects early-life Humans intestinal epithelium Lactobacillus leptomeninges Lipid Metabolism metabolism Mice Mice, Inbred C57BL Microbiota obesity Pediatric Obesity Polyesters single-cell RNA sequencing tricellular junction |
title | An early-life microbiota metabolite protects against obesity by regulating intestinal lipid metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20early-life%20microbiota%20metabolite%20protects%20against%20obesity%20by%20regulating%20intestinal%20lipid%20metabolism&rft.jtitle=Cell%20host%20&%20microbe&rft.au=Shelton,%20Catherine%20D.&rft.date=2023-10-11&rft.volume=31&rft.issue=10&rft.spage=1604&rft.epage=1619.e10&rft.pages=1604-1619.e10&rft.issn=1931-3128&rft.eissn=1934-6069&rft_id=info:doi/10.1016/j.chom.2023.09.002&rft_dat=%3Cproquest_pubme%3E2873249909%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873249909&rft_id=info:pmid/37794592&rft_els_id=S1931312823003694&rfr_iscdi=true |