Theory of Hot-Carrier Generation in Bimetallic Plasmonic Catalysts
Bimetallic nanoreactors in which a plasmonic metal is used to funnel solar energy toward a catalytic metal have recently been studied experimentally, but a detailed theoretical understanding of these systems is lacking. Here, we present theoretical results of hot-carrier generation rates of differen...
Gespeichert in:
Veröffentlicht in: | ACS photonics 2023-10, Vol.10 (10), p.3629-3636 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bimetallic nanoreactors in which a plasmonic metal is used to funnel solar energy toward a catalytic metal have recently been studied experimentally, but a detailed theoretical understanding of these systems is lacking. Here, we present theoretical results of hot-carrier generation rates of different Au–Pd nanoarchitectures. In particular, we study spherical core–shell nanoparticles with a Au core and a Pd shell as well as antenna–reactor systems consisting of a large Au nanoparticle that acts as an antenna and a smaller Pd satellite nanoparticle separated by a gap. In addition, we investigate an antenna–reactor system in which the satellite is a core–shell nanoparticle. Hot-carrier generation rates are obtained from an atomistic quantum-mechanical modeling technique which combines a solution of Maxwell’s equation with a tight-binding description of the nanoparticle electronic structure. We find that antenna–reactor systems exhibit significantly higher hot-carrier generation rates in the catalytic material than the core–shell system as a result of strong electric field enhancements associated with the gap between the antenna and the satellite. For these systems, we also study the dependence of the hot-carrier generation rate on the size of the gap, the radius of the antenna nanoparticle, and the direction of light polarization. Overall, we find a strong correlation between the calculated hot-carrier generation rates and the experimentally measured chemical activity for the different Au–Pd photocatalysts. Our insights pave the way toward a microscopic understanding of hot-carrier generation in heterogeneous nanostructures for photocatalysis and other energy-conversion applications. |
---|---|
ISSN: | 2330-4022 2330-4022 |
DOI: | 10.1021/acsphotonics.3c00715 |