ExpHBA Deep-IoT: Exponential Honey Badger Optimized Deep Learning For Breast Cancer Detection in IoT Healthcare System

Breast cancer (BC) is the most widely found disease among women in the world. The early detection of BC can frequently lessen the mortality rate as well as progress the probability of providing proper treatment. Hence, this paper focuses on devising the Exponential Honey Badger Optimization-based De...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of digital imaging 2023-12, Vol.36 (6), p.2461-2479
Hauptverfasser: Rajeswari, R., Sriramakrishnan, G. V., Ch.Vidyadhari, Kanimozhi, K. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2479
container_issue 6
container_start_page 2461
container_title Journal of digital imaging
container_volume 36
creator Rajeswari, R.
Sriramakrishnan, G. V.
Ch.Vidyadhari
Kanimozhi, K. V.
description Breast cancer (BC) is the most widely found disease among women in the world. The early detection of BC can frequently lessen the mortality rate as well as progress the probability of providing proper treatment. Hence, this paper focuses on devising the Exponential Honey Badger Optimization-based Deep Covolutional Neural Network (EHBO-based DCNN) for early identification of BC in the Internet of Things (IoT). Here, the Honey Badger Optimization (HBO) and Exponential Weighted Moving Average (EWMA) algorithms have been combined to create the EHBO. The EHBO is created to transfer the acquired medical data to the base station (BS) by choosing the best cluster heads to categorize the BC. Then, the statistical and texture features are extracted. Further, data augmentation is performed. Finally, the BC classification is done by DCNN. Thus, the observational outcome reveals that the EHBO-based DCNN algorithm attained outstanding performance concerning the testing accuracy, sensitivity, and specificity of 0.9051, 0.8971, and 0.9029, correspondingly. The accuracy of the proposed method is 7.23%, 6.62%, 5.39%, and 3.45% higher than the methods, such as multi-layer perceptron (MLP) classifier, deep learning, support vector machine (SVM), and ensemble-based classifier.
doi_str_mv 10.1007/s10278-023-00878-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10584750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2842451458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-8b22c0943aa085a4c8876ef484cdd50e8d6345b3b76764ef69cecd001e9114483</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxi0EoqHwAhyQJS5cFmyvvfZyQU3akkqReqBI3CzHO0ld7dqL7UDSp-mz8GS4TSl_Dpw88vzmm_n0IfSSkreUEPkuUcKkqgirK0JUqbaP0IQ2VFWSyS-P0YSoVlZUqfYAPUvpihAqheRP0UEteUsF5xP0_WQ7zqdH-BhgrM7CxXtcPoIHn53p8bxUOzw13RoiPh-zG9w1dHcwXoCJ3vk1Pg3xx800gkkZz4y3BT2GDDa74LHzuKjiOZg-X1oTAX_apQzDc_RkZfoEL-7fQ_T59ORiNq8W5x_PZkeLytaK5UotGbOk5bUxRAnDrVKygRVX3HadIKC6puZiWS9lIxsOq6a1YLtiFFpKOVf1Ifqw1x03ywE6W4xF0-sxusHEnQ7G6b873l3qdfimKRGKS0GKwpt7hRi-biBlPbhkoe-Nh7BJminOuKBc3C57_Q96FTbRF3-FkkqIRnBRKLanbAwpRVg9XEOJvg1W74PVJVh9F6zelqFXf_p4GPmVZAHqPZBKy5e8fu_-j-xPSZGvvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878556545</pqid></control><display><type>article</type><title>ExpHBA Deep-IoT: Exponential Honey Badger Optimized Deep Learning For Breast Cancer Detection in IoT Healthcare System</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Rajeswari, R. ; Sriramakrishnan, G. V. ; Ch.Vidyadhari ; Kanimozhi, K. V.</creator><creatorcontrib>Rajeswari, R. ; Sriramakrishnan, G. V. ; Ch.Vidyadhari ; Kanimozhi, K. V.</creatorcontrib><description>Breast cancer (BC) is the most widely found disease among women in the world. The early detection of BC can frequently lessen the mortality rate as well as progress the probability of providing proper treatment. Hence, this paper focuses on devising the Exponential Honey Badger Optimization-based Deep Covolutional Neural Network (EHBO-based DCNN) for early identification of BC in the Internet of Things (IoT). Here, the Honey Badger Optimization (HBO) and Exponential Weighted Moving Average (EWMA) algorithms have been combined to create the EHBO. The EHBO is created to transfer the acquired medical data to the base station (BS) by choosing the best cluster heads to categorize the BC. Then, the statistical and texture features are extracted. Further, data augmentation is performed. Finally, the BC classification is done by DCNN. Thus, the observational outcome reveals that the EHBO-based DCNN algorithm attained outstanding performance concerning the testing accuracy, sensitivity, and specificity of 0.9051, 0.8971, and 0.9029, correspondingly. The accuracy of the proposed method is 7.23%, 6.62%, 5.39%, and 3.45% higher than the methods, such as multi-layer perceptron (MLP) classifier, deep learning, support vector machine (SVM), and ensemble-based classifier.</description><identifier>ISSN: 0897-1889</identifier><identifier>ISSN: 1618-727X</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-023-00878-x</identifier><identifier>PMID: 37491544</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Breast cancer ; Breast Neoplasms - diagnostic imaging ; Classifiers ; Data acquisition ; Data augmentation ; Deep Learning ; Delivery of Health Care ; Female ; Honey ; Humans ; Imaging ; Internet of Things ; Machine learning ; Medicine ; Medicine &amp; Public Health ; Mellivora capensis ; Multilayer perceptrons ; Multilayers ; Neural networks ; Optimization ; Radiology ; Sensitivity analysis ; Statistical analysis ; Support vector machines</subject><ispartof>Journal of digital imaging, 2023-12, Vol.36 (6), p.2461-2479</ispartof><rights>The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c382t-8b22c0943aa085a4c8876ef484cdd50e8d6345b3b76764ef69cecd001e9114483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584750/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584750/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37491544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajeswari, R.</creatorcontrib><creatorcontrib>Sriramakrishnan, G. V.</creatorcontrib><creatorcontrib>Ch.Vidyadhari</creatorcontrib><creatorcontrib>Kanimozhi, K. V.</creatorcontrib><title>ExpHBA Deep-IoT: Exponential Honey Badger Optimized Deep Learning For Breast Cancer Detection in IoT Healthcare System</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>Breast cancer (BC) is the most widely found disease among women in the world. The early detection of BC can frequently lessen the mortality rate as well as progress the probability of providing proper treatment. Hence, this paper focuses on devising the Exponential Honey Badger Optimization-based Deep Covolutional Neural Network (EHBO-based DCNN) for early identification of BC in the Internet of Things (IoT). Here, the Honey Badger Optimization (HBO) and Exponential Weighted Moving Average (EWMA) algorithms have been combined to create the EHBO. The EHBO is created to transfer the acquired medical data to the base station (BS) by choosing the best cluster heads to categorize the BC. Then, the statistical and texture features are extracted. Further, data augmentation is performed. Finally, the BC classification is done by DCNN. Thus, the observational outcome reveals that the EHBO-based DCNN algorithm attained outstanding performance concerning the testing accuracy, sensitivity, and specificity of 0.9051, 0.8971, and 0.9029, correspondingly. The accuracy of the proposed method is 7.23%, 6.62%, 5.39%, and 3.45% higher than the methods, such as multi-layer perceptron (MLP) classifier, deep learning, support vector machine (SVM), and ensemble-based classifier.</description><subject>Algorithms</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Classifiers</subject><subject>Data acquisition</subject><subject>Data augmentation</subject><subject>Deep Learning</subject><subject>Delivery of Health Care</subject><subject>Female</subject><subject>Honey</subject><subject>Humans</subject><subject>Imaging</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mellivora capensis</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Radiology</subject><subject>Sensitivity analysis</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><issn>0897-1889</issn><issn>1618-727X</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc9uEzEQxi0EoqHwAhyQJS5cFmyvvfZyQU3akkqReqBI3CzHO0ld7dqL7UDSp-mz8GS4TSl_Dpw88vzmm_n0IfSSkreUEPkuUcKkqgirK0JUqbaP0IQ2VFWSyS-P0YSoVlZUqfYAPUvpihAqheRP0UEteUsF5xP0_WQ7zqdH-BhgrM7CxXtcPoIHn53p8bxUOzw13RoiPh-zG9w1dHcwXoCJ3vk1Pg3xx800gkkZz4y3BT2GDDa74LHzuKjiOZg-X1oTAX_apQzDc_RkZfoEL-7fQ_T59ORiNq8W5x_PZkeLytaK5UotGbOk5bUxRAnDrVKygRVX3HadIKC6puZiWS9lIxsOq6a1YLtiFFpKOVf1Ifqw1x03ywE6W4xF0-sxusHEnQ7G6b873l3qdfimKRGKS0GKwpt7hRi-biBlPbhkoe-Nh7BJminOuKBc3C57_Q96FTbRF3-FkkqIRnBRKLanbAwpRVg9XEOJvg1W74PVJVh9F6zelqFXf_p4GPmVZAHqPZBKy5e8fu_-j-xPSZGvvA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Rajeswari, R.</creator><creator>Sriramakrishnan, G. V.</creator><creator>Ch.Vidyadhari</creator><creator>Kanimozhi, K. V.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231201</creationdate><title>ExpHBA Deep-IoT: Exponential Honey Badger Optimized Deep Learning For Breast Cancer Detection in IoT Healthcare System</title><author>Rajeswari, R. ; Sriramakrishnan, G. V. ; Ch.Vidyadhari ; Kanimozhi, K. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-8b22c0943aa085a4c8876ef484cdd50e8d6345b3b76764ef69cecd001e9114483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Classifiers</topic><topic>Data acquisition</topic><topic>Data augmentation</topic><topic>Deep Learning</topic><topic>Delivery of Health Care</topic><topic>Female</topic><topic>Honey</topic><topic>Humans</topic><topic>Imaging</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mellivora capensis</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Radiology</topic><topic>Sensitivity analysis</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajeswari, R.</creatorcontrib><creatorcontrib>Sriramakrishnan, G. V.</creatorcontrib><creatorcontrib>Ch.Vidyadhari</creatorcontrib><creatorcontrib>Kanimozhi, K. V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajeswari, R.</au><au>Sriramakrishnan, G. V.</au><au>Ch.Vidyadhari</au><au>Kanimozhi, K. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ExpHBA Deep-IoT: Exponential Honey Badger Optimized Deep Learning For Breast Cancer Detection in IoT Healthcare System</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>36</volume><issue>6</issue><spage>2461</spage><epage>2479</epage><pages>2461-2479</pages><issn>0897-1889</issn><issn>1618-727X</issn><eissn>1618-727X</eissn><abstract>Breast cancer (BC) is the most widely found disease among women in the world. The early detection of BC can frequently lessen the mortality rate as well as progress the probability of providing proper treatment. Hence, this paper focuses on devising the Exponential Honey Badger Optimization-based Deep Covolutional Neural Network (EHBO-based DCNN) for early identification of BC in the Internet of Things (IoT). Here, the Honey Badger Optimization (HBO) and Exponential Weighted Moving Average (EWMA) algorithms have been combined to create the EHBO. The EHBO is created to transfer the acquired medical data to the base station (BS) by choosing the best cluster heads to categorize the BC. Then, the statistical and texture features are extracted. Further, data augmentation is performed. Finally, the BC classification is done by DCNN. Thus, the observational outcome reveals that the EHBO-based DCNN algorithm attained outstanding performance concerning the testing accuracy, sensitivity, and specificity of 0.9051, 0.8971, and 0.9029, correspondingly. The accuracy of the proposed method is 7.23%, 6.62%, 5.39%, and 3.45% higher than the methods, such as multi-layer perceptron (MLP) classifier, deep learning, support vector machine (SVM), and ensemble-based classifier.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>37491544</pmid><doi>10.1007/s10278-023-00878-x</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-1889
ispartof Journal of digital imaging, 2023-12, Vol.36 (6), p.2461-2479
issn 0897-1889
1618-727X
1618-727X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10584750
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Algorithms
Breast cancer
Breast Neoplasms - diagnostic imaging
Classifiers
Data acquisition
Data augmentation
Deep Learning
Delivery of Health Care
Female
Honey
Humans
Imaging
Internet of Things
Machine learning
Medicine
Medicine & Public Health
Mellivora capensis
Multilayer perceptrons
Multilayers
Neural networks
Optimization
Radiology
Sensitivity analysis
Statistical analysis
Support vector machines
title ExpHBA Deep-IoT: Exponential Honey Badger Optimized Deep Learning For Breast Cancer Detection in IoT Healthcare System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ExpHBA%20Deep-IoT:%20Exponential%20Honey%20Badger%20Optimized%20Deep%20Learning%20For%C2%A0Breast%20Cancer%20Detection%20in%20IoT%20Healthcare%20System&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Rajeswari,%20R.&rft.date=2023-12-01&rft.volume=36&rft.issue=6&rft.spage=2461&rft.epage=2479&rft.pages=2461-2479&rft.issn=0897-1889&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-023-00878-x&rft_dat=%3Cproquest_pubme%3E2842451458%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878556545&rft_id=info:pmid/37491544&rfr_iscdi=true