Elongation roadblocks mediated by dCas9 across human genes modulate transcription and nascent RNA processing

Non-cleaving Cas9 (dCas9) is widely employed to manipulate specific gene loci, often with scant regard for unintended transcriptional effects. We demonstrate here that dCas9 mediates precise RNA polymerase II transcriptional pausing followed by transcription termination and potential alternative pol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2023-10, Vol.30 (10), p.1536-1548
Hauptverfasser: Zukher, Inna, Dujardin, Gwendal, Sousa-Luís, Rui, Proudfoot, Nick J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1548
container_issue 10
container_start_page 1536
container_title Nature structural & molecular biology
container_volume 30
creator Zukher, Inna
Dujardin, Gwendal
Sousa-Luís, Rui
Proudfoot, Nick J.
description Non-cleaving Cas9 (dCas9) is widely employed to manipulate specific gene loci, often with scant regard for unintended transcriptional effects. We demonstrate here that dCas9 mediates precise RNA polymerase II transcriptional pausing followed by transcription termination and potential alternative polyadenylation. By contrast, alternative splicing is unaffected, likely requiring more sustained alteration to elongation speed. The effect on transcription is orientation specific, with pausing only being induced when dCas9-associated guide RNA anneals to the non-template strand. Targeting the template strand induces minimal effects on transcription elongation and thus provides a neutral approach to recruit dCas9-linked effector domains to specific gene regions. In essence, we evaluate molecular effects of targeting dCas9 to mammalian transcription units. In so doing, we also provide new information on elongation by RNA polymerase II and coupled pre-mRNA processing. This study shows that CRISPRi mediates precise transcriptional pausing, which can be followed by transcription termination. The pausing effect is asymmetric, only being induced when dCas9-bound guide RNA anneals to the non-template DNA strand.
doi_str_mv 10.1038/s41594-023-01090-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10584677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878558126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-88df069f92b8c8155365696b7d8aa398f634a18b55b9fd6d74ac5eb7e5b3cf523</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIiHwAyyQJTZsmvjR5bZXKBoFEikKUhTWll_d6dBjD3Z3pPw9npkwPBasylKduq5bF6G3lHykhMvT0lJQbUMYbwglijTqGTqm0EKjlITnh7fiR-hVKfeEMICOv0RHvOskl8CP0XQ-pTiYeUwR52S8nZL7XvA6-NHMwWP7iP3KFIWNy6kUfLesTcRDiKFCyS9TpfCcTSwuj5udjIkeR1NciDO-uT7Dm5xcKGWMw2v0ojdTCW-e6gn69vn8dnXRXH39crk6u2pcy8TcSOl7IlSvmJVOUgAuQChhOy-N4Ur2greGSgtgVe-F71rjINgugOWuB8ZP0Ke97max1cl2k2wmvcnj2uRHncyo_-7E8U4P6UFTArIVXVcVPjwp5PRjCWXW67E6miYTQ1qKZrJjVJJaKvr-H_Q-LTlWf1tKAkjKRKXYntqdMYf-sA0lepum3qepa5p6l6ZWdejdnz4OI7_iqwDfA6W24hDy77__I_sTHqmszw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878558126</pqid></control><display><type>article</type><title>Elongation roadblocks mediated by dCas9 across human genes modulate transcription and nascent RNA processing</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zukher, Inna ; Dujardin, Gwendal ; Sousa-Luís, Rui ; Proudfoot, Nick J.</creator><creatorcontrib>Zukher, Inna ; Dujardin, Gwendal ; Sousa-Luís, Rui ; Proudfoot, Nick J.</creatorcontrib><description>Non-cleaving Cas9 (dCas9) is widely employed to manipulate specific gene loci, often with scant regard for unintended transcriptional effects. We demonstrate here that dCas9 mediates precise RNA polymerase II transcriptional pausing followed by transcription termination and potential alternative polyadenylation. By contrast, alternative splicing is unaffected, likely requiring more sustained alteration to elongation speed. The effect on transcription is orientation specific, with pausing only being induced when dCas9-associated guide RNA anneals to the non-template strand. Targeting the template strand induces minimal effects on transcription elongation and thus provides a neutral approach to recruit dCas9-linked effector domains to specific gene regions. In essence, we evaluate molecular effects of targeting dCas9 to mammalian transcription units. In so doing, we also provide new information on elongation by RNA polymerase II and coupled pre-mRNA processing. This study shows that CRISPRi mediates precise transcriptional pausing, which can be followed by transcription termination. The pausing effect is asymmetric, only being induced when dCas9-bound guide RNA anneals to the non-template DNA strand.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-023-01090-9</identifier><identifier>PMID: 37783853</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337 ; 631/337/572 ; 631/337/572/2102 ; Alternative Splicing ; Animals ; Annealing ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; DNA-directed RNA polymerase ; Elongation ; Humans ; Life Sciences ; Mammals - genetics ; Membrane Biology ; mRNA processing ; Orientation effects ; Polyadenylation ; Post-transcription ; Protein Structure ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA polymerase II ; RNA Polymerase II - genetics ; RNA Polymerase II - metabolism ; RNA processing ; Transcription elongation ; Transcription termination ; Transcription, Genetic</subject><ispartof>Nature structural &amp; molecular biology, 2023-10, Vol.30 (10), p.1536-1548</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-88df069f92b8c8155365696b7d8aa398f634a18b55b9fd6d74ac5eb7e5b3cf523</cites><orcidid>0000-0001-8646-3222 ; 0000-0003-4320-6351 ; 0000-0003-0368-1676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-023-01090-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-023-01090-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37783853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zukher, Inna</creatorcontrib><creatorcontrib>Dujardin, Gwendal</creatorcontrib><creatorcontrib>Sousa-Luís, Rui</creatorcontrib><creatorcontrib>Proudfoot, Nick J.</creatorcontrib><title>Elongation roadblocks mediated by dCas9 across human genes modulate transcription and nascent RNA processing</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Non-cleaving Cas9 (dCas9) is widely employed to manipulate specific gene loci, often with scant regard for unintended transcriptional effects. We demonstrate here that dCas9 mediates precise RNA polymerase II transcriptional pausing followed by transcription termination and potential alternative polyadenylation. By contrast, alternative splicing is unaffected, likely requiring more sustained alteration to elongation speed. The effect on transcription is orientation specific, with pausing only being induced when dCas9-associated guide RNA anneals to the non-template strand. Targeting the template strand induces minimal effects on transcription elongation and thus provides a neutral approach to recruit dCas9-linked effector domains to specific gene regions. In essence, we evaluate molecular effects of targeting dCas9 to mammalian transcription units. In so doing, we also provide new information on elongation by RNA polymerase II and coupled pre-mRNA processing. This study shows that CRISPRi mediates precise transcriptional pausing, which can be followed by transcription termination. The pausing effect is asymmetric, only being induced when dCas9-bound guide RNA anneals to the non-template DNA strand.</description><subject>631/337</subject><subject>631/337/572</subject><subject>631/337/572/2102</subject><subject>Alternative Splicing</subject><subject>Animals</subject><subject>Annealing</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>DNA-directed RNA polymerase</subject><subject>Elongation</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mammals - genetics</subject><subject>Membrane Biology</subject><subject>mRNA processing</subject><subject>Orientation effects</subject><subject>Polyadenylation</subject><subject>Post-transcription</subject><subject>Protein Structure</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>RNA Polymerase II - genetics</subject><subject>RNA Polymerase II - metabolism</subject><subject>RNA processing</subject><subject>Transcription elongation</subject><subject>Transcription termination</subject><subject>Transcription, Genetic</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kctuFDEQRS0EIiHwAyyQJTZsmvjR5bZXKBoFEikKUhTWll_d6dBjD3Z3pPw9npkwPBasylKduq5bF6G3lHykhMvT0lJQbUMYbwglijTqGTqm0EKjlITnh7fiR-hVKfeEMICOv0RHvOskl8CP0XQ-pTiYeUwR52S8nZL7XvA6-NHMwWP7iP3KFIWNy6kUfLesTcRDiKFCyS9TpfCcTSwuj5udjIkeR1NciDO-uT7Dm5xcKGWMw2v0ojdTCW-e6gn69vn8dnXRXH39crk6u2pcy8TcSOl7IlSvmJVOUgAuQChhOy-N4Ur2greGSgtgVe-F71rjINgugOWuB8ZP0Ke97max1cl2k2wmvcnj2uRHncyo_-7E8U4P6UFTArIVXVcVPjwp5PRjCWXW67E6miYTQ1qKZrJjVJJaKvr-H_Q-LTlWf1tKAkjKRKXYntqdMYf-sA0lepum3qepa5p6l6ZWdejdnz4OI7_iqwDfA6W24hDy77__I_sTHqmszw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Zukher, Inna</creator><creator>Dujardin, Gwendal</creator><creator>Sousa-Luís, Rui</creator><creator>Proudfoot, Nick J.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8646-3222</orcidid><orcidid>https://orcid.org/0000-0003-4320-6351</orcidid><orcidid>https://orcid.org/0000-0003-0368-1676</orcidid></search><sort><creationdate>20231001</creationdate><title>Elongation roadblocks mediated by dCas9 across human genes modulate transcription and nascent RNA processing</title><author>Zukher, Inna ; Dujardin, Gwendal ; Sousa-Luís, Rui ; Proudfoot, Nick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-88df069f92b8c8155365696b7d8aa398f634a18b55b9fd6d74ac5eb7e5b3cf523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/337</topic><topic>631/337/572</topic><topic>631/337/572/2102</topic><topic>Alternative Splicing</topic><topic>Animals</topic><topic>Annealing</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>DNA-directed RNA polymerase</topic><topic>Elongation</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mammals - genetics</topic><topic>Membrane Biology</topic><topic>mRNA processing</topic><topic>Orientation effects</topic><topic>Polyadenylation</topic><topic>Post-transcription</topic><topic>Protein Structure</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>RNA Polymerase II - genetics</topic><topic>RNA Polymerase II - metabolism</topic><topic>RNA processing</topic><topic>Transcription elongation</topic><topic>Transcription termination</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zukher, Inna</creatorcontrib><creatorcontrib>Dujardin, Gwendal</creatorcontrib><creatorcontrib>Sousa-Luís, Rui</creatorcontrib><creatorcontrib>Proudfoot, Nick J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zukher, Inna</au><au>Dujardin, Gwendal</au><au>Sousa-Luís, Rui</au><au>Proudfoot, Nick J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elongation roadblocks mediated by dCas9 across human genes modulate transcription and nascent RNA processing</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>30</volume><issue>10</issue><spage>1536</spage><epage>1548</epage><pages>1536-1548</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Non-cleaving Cas9 (dCas9) is widely employed to manipulate specific gene loci, often with scant regard for unintended transcriptional effects. We demonstrate here that dCas9 mediates precise RNA polymerase II transcriptional pausing followed by transcription termination and potential alternative polyadenylation. By contrast, alternative splicing is unaffected, likely requiring more sustained alteration to elongation speed. The effect on transcription is orientation specific, with pausing only being induced when dCas9-associated guide RNA anneals to the non-template strand. Targeting the template strand induces minimal effects on transcription elongation and thus provides a neutral approach to recruit dCas9-linked effector domains to specific gene regions. In essence, we evaluate molecular effects of targeting dCas9 to mammalian transcription units. In so doing, we also provide new information on elongation by RNA polymerase II and coupled pre-mRNA processing. This study shows that CRISPRi mediates precise transcriptional pausing, which can be followed by transcription termination. The pausing effect is asymmetric, only being induced when dCas9-bound guide RNA anneals to the non-template DNA strand.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37783853</pmid><doi>10.1038/s41594-023-01090-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8646-3222</orcidid><orcidid>https://orcid.org/0000-0003-4320-6351</orcidid><orcidid>https://orcid.org/0000-0003-0368-1676</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2023-10, Vol.30 (10), p.1536-1548
issn 1545-9993
1545-9985
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10584677
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/337
631/337/572
631/337/572/2102
Alternative Splicing
Animals
Annealing
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
DNA-directed RNA polymerase
Elongation
Humans
Life Sciences
Mammals - genetics
Membrane Biology
mRNA processing
Orientation effects
Polyadenylation
Post-transcription
Protein Structure
Ribonucleic acid
RNA
RNA polymerase
RNA polymerase II
RNA Polymerase II - genetics
RNA Polymerase II - metabolism
RNA processing
Transcription elongation
Transcription termination
Transcription, Genetic
title Elongation roadblocks mediated by dCas9 across human genes modulate transcription and nascent RNA processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elongation%20roadblocks%20mediated%20by%20dCas9%20across%20human%20genes%20modulate%20transcription%20and%20nascent%20RNA%20processing&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Zukher,%20Inna&rft.date=2023-10-01&rft.volume=30&rft.issue=10&rft.spage=1536&rft.epage=1548&rft.pages=1536-1548&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-023-01090-9&rft_dat=%3Cproquest_pubme%3E2878558126%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878558126&rft_id=info:pmid/37783853&rfr_iscdi=true