metaGOflow: a workflow for the analysis of marine Genomic Observatories shotgun metagenomics data

Abstract Background Genomic Observatories (GOs) are sites of long-term scientific study that undertake regular assessments of the genomic biodiversity. The European Marine Omics Biodiversity Observation Network (EMO BON) is a network of GOs that conduct regular biological community samplings to gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gigascience 2023-01, Vol.12
Hauptverfasser: Zafeiropoulos, Haris, Beracochea, Martin, Ninidakis, Stelios, Exter, Katrina, Potirakis, Antonis, De Moro, Gianluca, Richardson, Lorna, Corre, Erwan, Machado, João, Pafilis, Evangelos, Kotoulas, Georgios, Santi, Ioulia, Finn, Robert D, Cox, Cymon J, Pavloudi, Christina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Gigascience
container_volume 12
creator Zafeiropoulos, Haris
Beracochea, Martin
Ninidakis, Stelios
Exter, Katrina
Potirakis, Antonis
De Moro, Gianluca
Richardson, Lorna
Corre, Erwan
Machado, João
Pafilis, Evangelos
Kotoulas, Georgios
Santi, Ioulia
Finn, Robert D
Cox, Cymon J
Pavloudi, Christina
description Abstract Background Genomic Observatories (GOs) are sites of long-term scientific study that undertake regular assessments of the genomic biodiversity. The European Marine Omics Biodiversity Observation Network (EMO BON) is a network of GOs that conduct regular biological community samplings to generate environmental and metagenomic data of microbial communities from designated marine stations around Europe. The development of an effective workflow is essential for the analysis of the EMO BON metagenomic data in a timely and reproducible manner. Findings Based on the established MGnify resource, we developed metaGOflow. metaGOflow supports the fast inference of taxonomic profiles from GO-derived data based on ribosomal RNA genes and their functional annotation using the raw reads. Thanks to the Research Object Crate packaging, relevant metadata about the sample under study, and the details of the bioinformatics analysis it has been subjected to, are inherited to the data product while its modular implementation allows running the workflow partially. The analysis of 2 EMO BON samples and 1 Tara Oceans sample was performed as a use case. Conclusions metaGOflow is an efficient and robust workflow that scales to the needs of projects producing big metagenomic data such as EMO BON. It highlights how containerization technologies along with modern workflow languages and metadata package approaches can support the needs of researchers when dealing with ever-increasing volumes of biological data. Despite being initially oriented to address the needs of EMO BON, metaGOflow is a flexible and easy-to-use workflow that can be broadly used for one-sample-at-a-time analysis of shotgun metagenomics data.
doi_str_mv 10.1093/gigascience/giad078
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10583283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gigascience/giad078</oup_id><sourcerecordid>2878710692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-5d96b8c2710eec73a0d1e6ab34f73dd55d999b6ce4712b3402fe08ac30e1f6263</originalsourceid><addsrcrecordid>eNqNkU9rGzEQxUVIaUyaT1Aogl5ycao_3pW2lxBM6hYCvjSQm5jVzq6V7q4caTfG374ydozTU3XRoPnN42keIZ85u-GskN8a10C0DnuLqYaKKX1GJoLN1FRw9XR-Ul-QqxifWTpKaa3kR3Ihlc6YVnxCoMMBFsu69ZvvFOjGhz-7mtY-0GGFFHpot9FF6mvaQXA90gX2vnOWLsuI4RUGHxxGGld-aMae7vSaPRFpBQN8Ih9qaCNeHe5L8vjj_vf85_Rhufg1v3uY2ozxYZpVRV5qKxRniFZJYBXHHEo5q5Wsqiz1i6LMLc4UF-mViRqZBisZ8joXubwkt3vd9Vh2WFnshwCtWQeXfG-NB2fed3q3Mo1_NZxlWgotk8L1QSH4lxHjYDoXLbYt9OjHaIRWaWcsL0RCv_6DPvsxpF1FI7lkhZKa7yzJPWWDjzFgfXTDmdnFaE5iNIcY09SX048cZ95CS8DNHvDj-r8U_wIuC69W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130973816</pqid></control><display><type>article</type><title>metaGOflow: a workflow for the analysis of marine Genomic Observatories shotgun metagenomics data</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zafeiropoulos, Haris ; Beracochea, Martin ; Ninidakis, Stelios ; Exter, Katrina ; Potirakis, Antonis ; De Moro, Gianluca ; Richardson, Lorna ; Corre, Erwan ; Machado, João ; Pafilis, Evangelos ; Kotoulas, Georgios ; Santi, Ioulia ; Finn, Robert D ; Cox, Cymon J ; Pavloudi, Christina</creator><creatorcontrib>Zafeiropoulos, Haris ; Beracochea, Martin ; Ninidakis, Stelios ; Exter, Katrina ; Potirakis, Antonis ; De Moro, Gianluca ; Richardson, Lorna ; Corre, Erwan ; Machado, João ; Pafilis, Evangelos ; Kotoulas, Georgios ; Santi, Ioulia ; Finn, Robert D ; Cox, Cymon J ; Pavloudi, Christina</creatorcontrib><description>Abstract Background Genomic Observatories (GOs) are sites of long-term scientific study that undertake regular assessments of the genomic biodiversity. The European Marine Omics Biodiversity Observation Network (EMO BON) is a network of GOs that conduct regular biological community samplings to generate environmental and metagenomic data of microbial communities from designated marine stations around Europe. The development of an effective workflow is essential for the analysis of the EMO BON metagenomic data in a timely and reproducible manner. Findings Based on the established MGnify resource, we developed metaGOflow. metaGOflow supports the fast inference of taxonomic profiles from GO-derived data based on ribosomal RNA genes and their functional annotation using the raw reads. Thanks to the Research Object Crate packaging, relevant metadata about the sample under study, and the details of the bioinformatics analysis it has been subjected to, are inherited to the data product while its modular implementation allows running the workflow partially. The analysis of 2 EMO BON samples and 1 Tara Oceans sample was performed as a use case. Conclusions metaGOflow is an efficient and robust workflow that scales to the needs of projects producing big metagenomic data such as EMO BON. It highlights how containerization technologies along with modern workflow languages and metadata package approaches can support the needs of researchers when dealing with ever-increasing volumes of biological data. Despite being initially oriented to address the needs of EMO BON, metaGOflow is a flexible and easy-to-use workflow that can be broadly used for one-sample-at-a-time analysis of shotgun metagenomics data.</description><identifier>ISSN: 2047-217X</identifier><identifier>EISSN: 2047-217X</identifier><identifier>DOI: 10.1093/gigascience/giad078</identifier><identifier>PMID: 37850871</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Annotations ; Biodiversity ; Bioinformatics ; Biological effects ; Computational Biology ; Data analysis ; Genomic analysis ; Genomics ; Marine biology ; Marine resources ; Metadata ; Metagenome ; Metagenomics ; Microorganisms ; Observatories ; Oceans ; rRNA ; Software ; Technical Note ; Workflow</subject><ispartof>Gigascience, 2023-01, Vol.12</ispartof><rights>The Author(s) 2023. Published by Oxford University Press GigaScience. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press GigaScience.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-5d96b8c2710eec73a0d1e6ab34f73dd55d999b6ce4712b3402fe08ac30e1f6263</citedby><cites>FETCH-LOGICAL-c501t-5d96b8c2710eec73a0d1e6ab34f73dd55d999b6ce4712b3402fe08ac30e1f6263</cites><orcidid>0000-0002-7404-9670 ; 0000-0002-0202-8256 ; 0000-0003-3898-9451 ; 0000-0002-3655-5660 ; 0000-0001-5079-0125 ; 0000-0002-5542-0278 ; 0000-0001-6354-2278 ; 0000-0002-4927-979X ; 0000-0001-8626-2148 ; 0000-0001-5106-6067 ; 0000-0002-5911-1536 ; 0000-0002-4405-6802 ; 0000-0003-3472-3736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583283/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583283/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37850871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zafeiropoulos, Haris</creatorcontrib><creatorcontrib>Beracochea, Martin</creatorcontrib><creatorcontrib>Ninidakis, Stelios</creatorcontrib><creatorcontrib>Exter, Katrina</creatorcontrib><creatorcontrib>Potirakis, Antonis</creatorcontrib><creatorcontrib>De Moro, Gianluca</creatorcontrib><creatorcontrib>Richardson, Lorna</creatorcontrib><creatorcontrib>Corre, Erwan</creatorcontrib><creatorcontrib>Machado, João</creatorcontrib><creatorcontrib>Pafilis, Evangelos</creatorcontrib><creatorcontrib>Kotoulas, Georgios</creatorcontrib><creatorcontrib>Santi, Ioulia</creatorcontrib><creatorcontrib>Finn, Robert D</creatorcontrib><creatorcontrib>Cox, Cymon J</creatorcontrib><creatorcontrib>Pavloudi, Christina</creatorcontrib><title>metaGOflow: a workflow for the analysis of marine Genomic Observatories shotgun metagenomics data</title><title>Gigascience</title><addtitle>Gigascience</addtitle><description>Abstract Background Genomic Observatories (GOs) are sites of long-term scientific study that undertake regular assessments of the genomic biodiversity. The European Marine Omics Biodiversity Observation Network (EMO BON) is a network of GOs that conduct regular biological community samplings to generate environmental and metagenomic data of microbial communities from designated marine stations around Europe. The development of an effective workflow is essential for the analysis of the EMO BON metagenomic data in a timely and reproducible manner. Findings Based on the established MGnify resource, we developed metaGOflow. metaGOflow supports the fast inference of taxonomic profiles from GO-derived data based on ribosomal RNA genes and their functional annotation using the raw reads. Thanks to the Research Object Crate packaging, relevant metadata about the sample under study, and the details of the bioinformatics analysis it has been subjected to, are inherited to the data product while its modular implementation allows running the workflow partially. The analysis of 2 EMO BON samples and 1 Tara Oceans sample was performed as a use case. Conclusions metaGOflow is an efficient and robust workflow that scales to the needs of projects producing big metagenomic data such as EMO BON. It highlights how containerization technologies along with modern workflow languages and metadata package approaches can support the needs of researchers when dealing with ever-increasing volumes of biological data. Despite being initially oriented to address the needs of EMO BON, metaGOflow is a flexible and easy-to-use workflow that can be broadly used for one-sample-at-a-time analysis of shotgun metagenomics data.</description><subject>Annotations</subject><subject>Biodiversity</subject><subject>Bioinformatics</subject><subject>Biological effects</subject><subject>Computational Biology</subject><subject>Data analysis</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Marine biology</subject><subject>Marine resources</subject><subject>Metadata</subject><subject>Metagenome</subject><subject>Metagenomics</subject><subject>Microorganisms</subject><subject>Observatories</subject><subject>Oceans</subject><subject>rRNA</subject><subject>Software</subject><subject>Technical Note</subject><subject>Workflow</subject><issn>2047-217X</issn><issn>2047-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU9rGzEQxUVIaUyaT1Aogl5ycao_3pW2lxBM6hYCvjSQm5jVzq6V7q4caTfG374ydozTU3XRoPnN42keIZ85u-GskN8a10C0DnuLqYaKKX1GJoLN1FRw9XR-Ul-QqxifWTpKaa3kR3Ihlc6YVnxCoMMBFsu69ZvvFOjGhz-7mtY-0GGFFHpot9FF6mvaQXA90gX2vnOWLsuI4RUGHxxGGld-aMae7vSaPRFpBQN8Ih9qaCNeHe5L8vjj_vf85_Rhufg1v3uY2ozxYZpVRV5qKxRniFZJYBXHHEo5q5Wsqiz1i6LMLc4UF-mViRqZBisZ8joXubwkt3vd9Vh2WFnshwCtWQeXfG-NB2fed3q3Mo1_NZxlWgotk8L1QSH4lxHjYDoXLbYt9OjHaIRWaWcsL0RCv_6DPvsxpF1FI7lkhZKa7yzJPWWDjzFgfXTDmdnFaE5iNIcY09SX048cZ95CS8DNHvDj-r8U_wIuC69W</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zafeiropoulos, Haris</creator><creator>Beracochea, Martin</creator><creator>Ninidakis, Stelios</creator><creator>Exter, Katrina</creator><creator>Potirakis, Antonis</creator><creator>De Moro, Gianluca</creator><creator>Richardson, Lorna</creator><creator>Corre, Erwan</creator><creator>Machado, João</creator><creator>Pafilis, Evangelos</creator><creator>Kotoulas, Georgios</creator><creator>Santi, Ioulia</creator><creator>Finn, Robert D</creator><creator>Cox, Cymon J</creator><creator>Pavloudi, Christina</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7404-9670</orcidid><orcidid>https://orcid.org/0000-0002-0202-8256</orcidid><orcidid>https://orcid.org/0000-0003-3898-9451</orcidid><orcidid>https://orcid.org/0000-0002-3655-5660</orcidid><orcidid>https://orcid.org/0000-0001-5079-0125</orcidid><orcidid>https://orcid.org/0000-0002-5542-0278</orcidid><orcidid>https://orcid.org/0000-0001-6354-2278</orcidid><orcidid>https://orcid.org/0000-0002-4927-979X</orcidid><orcidid>https://orcid.org/0000-0001-8626-2148</orcidid><orcidid>https://orcid.org/0000-0001-5106-6067</orcidid><orcidid>https://orcid.org/0000-0002-5911-1536</orcidid><orcidid>https://orcid.org/0000-0002-4405-6802</orcidid><orcidid>https://orcid.org/0000-0003-3472-3736</orcidid></search><sort><creationdate>20230101</creationdate><title>metaGOflow: a workflow for the analysis of marine Genomic Observatories shotgun metagenomics data</title><author>Zafeiropoulos, Haris ; Beracochea, Martin ; Ninidakis, Stelios ; Exter, Katrina ; Potirakis, Antonis ; De Moro, Gianluca ; Richardson, Lorna ; Corre, Erwan ; Machado, João ; Pafilis, Evangelos ; Kotoulas, Georgios ; Santi, Ioulia ; Finn, Robert D ; Cox, Cymon J ; Pavloudi, Christina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-5d96b8c2710eec73a0d1e6ab34f73dd55d999b6ce4712b3402fe08ac30e1f6263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annotations</topic><topic>Biodiversity</topic><topic>Bioinformatics</topic><topic>Biological effects</topic><topic>Computational Biology</topic><topic>Data analysis</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Marine biology</topic><topic>Marine resources</topic><topic>Metadata</topic><topic>Metagenome</topic><topic>Metagenomics</topic><topic>Microorganisms</topic><topic>Observatories</topic><topic>Oceans</topic><topic>rRNA</topic><topic>Software</topic><topic>Technical Note</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafeiropoulos, Haris</creatorcontrib><creatorcontrib>Beracochea, Martin</creatorcontrib><creatorcontrib>Ninidakis, Stelios</creatorcontrib><creatorcontrib>Exter, Katrina</creatorcontrib><creatorcontrib>Potirakis, Antonis</creatorcontrib><creatorcontrib>De Moro, Gianluca</creatorcontrib><creatorcontrib>Richardson, Lorna</creatorcontrib><creatorcontrib>Corre, Erwan</creatorcontrib><creatorcontrib>Machado, João</creatorcontrib><creatorcontrib>Pafilis, Evangelos</creatorcontrib><creatorcontrib>Kotoulas, Georgios</creatorcontrib><creatorcontrib>Santi, Ioulia</creatorcontrib><creatorcontrib>Finn, Robert D</creatorcontrib><creatorcontrib>Cox, Cymon J</creatorcontrib><creatorcontrib>Pavloudi, Christina</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gigascience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafeiropoulos, Haris</au><au>Beracochea, Martin</au><au>Ninidakis, Stelios</au><au>Exter, Katrina</au><au>Potirakis, Antonis</au><au>De Moro, Gianluca</au><au>Richardson, Lorna</au><au>Corre, Erwan</au><au>Machado, João</au><au>Pafilis, Evangelos</au><au>Kotoulas, Georgios</au><au>Santi, Ioulia</au><au>Finn, Robert D</au><au>Cox, Cymon J</au><au>Pavloudi, Christina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>metaGOflow: a workflow for the analysis of marine Genomic Observatories shotgun metagenomics data</atitle><jtitle>Gigascience</jtitle><addtitle>Gigascience</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>12</volume><issn>2047-217X</issn><eissn>2047-217X</eissn><abstract>Abstract Background Genomic Observatories (GOs) are sites of long-term scientific study that undertake regular assessments of the genomic biodiversity. The European Marine Omics Biodiversity Observation Network (EMO BON) is a network of GOs that conduct regular biological community samplings to generate environmental and metagenomic data of microbial communities from designated marine stations around Europe. The development of an effective workflow is essential for the analysis of the EMO BON metagenomic data in a timely and reproducible manner. Findings Based on the established MGnify resource, we developed metaGOflow. metaGOflow supports the fast inference of taxonomic profiles from GO-derived data based on ribosomal RNA genes and their functional annotation using the raw reads. Thanks to the Research Object Crate packaging, relevant metadata about the sample under study, and the details of the bioinformatics analysis it has been subjected to, are inherited to the data product while its modular implementation allows running the workflow partially. The analysis of 2 EMO BON samples and 1 Tara Oceans sample was performed as a use case. Conclusions metaGOflow is an efficient and robust workflow that scales to the needs of projects producing big metagenomic data such as EMO BON. It highlights how containerization technologies along with modern workflow languages and metadata package approaches can support the needs of researchers when dealing with ever-increasing volumes of biological data. Despite being initially oriented to address the needs of EMO BON, metaGOflow is a flexible and easy-to-use workflow that can be broadly used for one-sample-at-a-time analysis of shotgun metagenomics data.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>37850871</pmid><doi>10.1093/gigascience/giad078</doi><orcidid>https://orcid.org/0000-0002-7404-9670</orcidid><orcidid>https://orcid.org/0000-0002-0202-8256</orcidid><orcidid>https://orcid.org/0000-0003-3898-9451</orcidid><orcidid>https://orcid.org/0000-0002-3655-5660</orcidid><orcidid>https://orcid.org/0000-0001-5079-0125</orcidid><orcidid>https://orcid.org/0000-0002-5542-0278</orcidid><orcidid>https://orcid.org/0000-0001-6354-2278</orcidid><orcidid>https://orcid.org/0000-0002-4927-979X</orcidid><orcidid>https://orcid.org/0000-0001-8626-2148</orcidid><orcidid>https://orcid.org/0000-0001-5106-6067</orcidid><orcidid>https://orcid.org/0000-0002-5911-1536</orcidid><orcidid>https://orcid.org/0000-0002-4405-6802</orcidid><orcidid>https://orcid.org/0000-0003-3472-3736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-217X
ispartof Gigascience, 2023-01, Vol.12
issn 2047-217X
2047-217X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10583283
source Oxford Journals Open Access Collection; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Annotations
Biodiversity
Bioinformatics
Biological effects
Computational Biology
Data analysis
Genomic analysis
Genomics
Marine biology
Marine resources
Metadata
Metagenome
Metagenomics
Microorganisms
Observatories
Oceans
rRNA
Software
Technical Note
Workflow
title metaGOflow: a workflow for the analysis of marine Genomic Observatories shotgun metagenomics data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=metaGOflow:%20a%20workflow%20for%20the%20analysis%20of%20marine%20Genomic%20Observatories%20shotgun%20metagenomics%20data&rft.jtitle=Gigascience&rft.au=Zafeiropoulos,%20Haris&rft.date=2023-01-01&rft.volume=12&rft.issn=2047-217X&rft.eissn=2047-217X&rft_id=info:doi/10.1093/gigascience/giad078&rft_dat=%3Cproquest_pubme%3E2878710692%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130973816&rft_id=info:pmid/37850871&rft_oup_id=10.1093/gigascience/giad078&rfr_iscdi=true