Supported Gold Catalysts for Base-Free Furfural Oxidation: The State of the Art and Machine-Learning-Enabled Optimization
Supported gold nanoparticles have proven to be highly effective catalysts for the base-free oxidation of furfural, a compound derived from biomass. Their small size enables a high surface-area-to-volume ratio, providing abundant active sites for the reaction to take place. These gold nanoparticles s...
Gespeichert in:
Veröffentlicht in: | Materials 2023-09, Vol.16 (19), p.6357 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 6357 |
container_title | Materials |
container_volume | 16 |
creator | Thuriot-Roukos, Joëlle Ferraz, Camila Palombo K. Al Rawas, Hisham Heyte, Svetlana Paul, Sébastien Itabaiana Jr, Ivaldo Pietrowski, Mariusz Zieliński, Michal Ghazzal, Mohammed N. Dumeignil, Franck Wojcieszak, Robert |
description | Supported gold nanoparticles have proven to be highly effective catalysts for the base-free oxidation of furfural, a compound derived from biomass. Their small size enables a high surface-area-to-volume ratio, providing abundant active sites for the reaction to take place. These gold nanoparticles serve as catalysts by providing surfaces for furfural molecules to adsorb onto and facilitating electron transfer between the substrate and the oxidizing agent. The role of the support in this reaction has been widely studied, and gold–support interactions have been found to be beneficial. However, the exact mechanism of furfural oxidation under base-free conditions remains an active area of research and is not yet fully understood. In this review, we delve into the essential factors that influence the selectivity of furfural oxidation. We present an optimization process that highlights the significant role of machine learning in identifying the best catalyst for this reaction. The principal objective of this study is to provide a comprehensive review of research conducted over the past five years concerning the catalytic oxidation of furfural under base-free conditions. By conducting tree decision making on experimental data from recent articles, a total of 93 gold-based catalysts are compared. The relative variable importance chart analysis reveals that the support preparation method and the pH of the solution are the most crucial factors determining the yield of furoic acid in this oxidation process. |
doi_str_mv | 10.3390/ma16196357 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10573714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772097882</galeid><sourcerecordid>A772097882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-df8f7aefd0b25f749d4e3b17abaa0c3dc31ffa104128780dd12533c0110fc1983</originalsourceid><addsrcrecordid>eNpdkk1v3CAQhq2qVROlufQXIPXSVnIKxjaml2q7yiaVttpD0jMa87FLZIMLOOr214fNRv0IHIDheWde0BTFW4IvKOX40wikJbylDXtRnBLO25Lwun75z_6kOI_xDudBKekq_ro4oayjdc3pabG_mafJh6QVuvKDQktIMOxjisj4gL5C1OUqaI1WczBzgAFtflkFyXr3Gd3uNLpJkDTyBqV8WISEwCn0HeTOOl2uNQRn3ba8dNAPucRmSna0vx_1b4pXBoaoz5_Ws-LH6vJ2eV2uN1fflot1KWvSplKZzjDQRuG-agyruao17QmDHgBLqiQlxgDBNak61mGlSNVQKjEh2EjCO3pWfDnmneZ-1Epql_I7xBTsCGEvPFjx_42zO7H194LghlFG6pzhwzHD7pnuerEWhxiuq6bJFu5JZt8_VQv-56xjEqONUg8DOO3nKLJJRjnhmGX03TP0zs_B5b84UG3bUMZppi6O1BYGLawzPpuUeSo9WumdNjbHF4xVmLOuq7Lg41Egg48xaPPHMsHi0DLib8vQB8kwsXY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876653793</pqid></control><display><type>article</type><title>Supported Gold Catalysts for Base-Free Furfural Oxidation: The State of the Art and Machine-Learning-Enabled Optimization</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Thuriot-Roukos, Joëlle ; Ferraz, Camila Palombo ; K. Al Rawas, Hisham ; Heyte, Svetlana ; Paul, Sébastien ; Itabaiana Jr, Ivaldo ; Pietrowski, Mariusz ; Zieliński, Michal ; Ghazzal, Mohammed N. ; Dumeignil, Franck ; Wojcieszak, Robert</creator><creatorcontrib>Thuriot-Roukos, Joëlle ; Ferraz, Camila Palombo ; K. Al Rawas, Hisham ; Heyte, Svetlana ; Paul, Sébastien ; Itabaiana Jr, Ivaldo ; Pietrowski, Mariusz ; Zieliński, Michal ; Ghazzal, Mohammed N. ; Dumeignil, Franck ; Wojcieszak, Robert</creatorcontrib><description>Supported gold nanoparticles have proven to be highly effective catalysts for the base-free oxidation of furfural, a compound derived from biomass. Their small size enables a high surface-area-to-volume ratio, providing abundant active sites for the reaction to take place. These gold nanoparticles serve as catalysts by providing surfaces for furfural molecules to adsorb onto and facilitating electron transfer between the substrate and the oxidizing agent. The role of the support in this reaction has been widely studied, and gold–support interactions have been found to be beneficial. However, the exact mechanism of furfural oxidation under base-free conditions remains an active area of research and is not yet fully understood. In this review, we delve into the essential factors that influence the selectivity of furfural oxidation. We present an optimization process that highlights the significant role of machine learning in identifying the best catalyst for this reaction. The principal objective of this study is to provide a comprehensive review of research conducted over the past five years concerning the catalytic oxidation of furfural under base-free conditions. By conducting tree decision making on experimental data from recent articles, a total of 93 gold-based catalysts are compared. The relative variable importance chart analysis reveals that the support preparation method and the pH of the solution are the most crucial factors determining the yield of furoic acid in this oxidation process.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16196357</identifier><identifier>PMID: 37834493</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Analysis ; Biodiesel fuels ; Biofuels ; Biomass ; Catalysis ; Catalysts ; Catalytic oxidation ; Cellulose ; Chemical Sciences ; Climate change ; Decomposition ; Electron transfer ; Electron transport ; Energy consumption ; Furfural ; Furoic acid ; Glucose ; Gold ; Lignocellulose ; Machine learning ; Metals ; Nanoparticles ; Optimization ; Organic chemicals ; Oxidation ; Oxidation-reduction reaction ; Oxidizing agents ; Review ; Substrates</subject><ispartof>Materials, 2023-09, Vol.16 (19), p.6357</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c416t-df8f7aefd0b25f749d4e3b17abaa0c3dc31ffa104128780dd12533c0110fc1983</cites><orcidid>0000-0001-9727-8196 ; 0000-0002-8956-5846 ; 0000-0002-6599-4929 ; 0000-0001-9877-9902 ; 0000-0003-0725-0881 ; 0000-0002-6989-5039 ; 0000-0003-0490-718X ; 0000-0003-1004-8115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573714/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573714/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://hal.univ-lille.fr/hal-04255104$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Thuriot-Roukos, Joëlle</creatorcontrib><creatorcontrib>Ferraz, Camila Palombo</creatorcontrib><creatorcontrib>K. Al Rawas, Hisham</creatorcontrib><creatorcontrib>Heyte, Svetlana</creatorcontrib><creatorcontrib>Paul, Sébastien</creatorcontrib><creatorcontrib>Itabaiana Jr, Ivaldo</creatorcontrib><creatorcontrib>Pietrowski, Mariusz</creatorcontrib><creatorcontrib>Zieliński, Michal</creatorcontrib><creatorcontrib>Ghazzal, Mohammed N.</creatorcontrib><creatorcontrib>Dumeignil, Franck</creatorcontrib><creatorcontrib>Wojcieszak, Robert</creatorcontrib><title>Supported Gold Catalysts for Base-Free Furfural Oxidation: The State of the Art and Machine-Learning-Enabled Optimization</title><title>Materials</title><description>Supported gold nanoparticles have proven to be highly effective catalysts for the base-free oxidation of furfural, a compound derived from biomass. Their small size enables a high surface-area-to-volume ratio, providing abundant active sites for the reaction to take place. These gold nanoparticles serve as catalysts by providing surfaces for furfural molecules to adsorb onto and facilitating electron transfer between the substrate and the oxidizing agent. The role of the support in this reaction has been widely studied, and gold–support interactions have been found to be beneficial. However, the exact mechanism of furfural oxidation under base-free conditions remains an active area of research and is not yet fully understood. In this review, we delve into the essential factors that influence the selectivity of furfural oxidation. We present an optimization process that highlights the significant role of machine learning in identifying the best catalyst for this reaction. The principal objective of this study is to provide a comprehensive review of research conducted over the past five years concerning the catalytic oxidation of furfural under base-free conditions. By conducting tree decision making on experimental data from recent articles, a total of 93 gold-based catalysts are compared. The relative variable importance chart analysis reveals that the support preparation method and the pH of the solution are the most crucial factors determining the yield of furoic acid in this oxidation process.</description><subject>Acids</subject><subject>Analysis</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic oxidation</subject><subject>Cellulose</subject><subject>Chemical Sciences</subject><subject>Climate change</subject><subject>Decomposition</subject><subject>Electron transfer</subject><subject>Electron transport</subject><subject>Energy consumption</subject><subject>Furfural</subject><subject>Furoic acid</subject><subject>Glucose</subject><subject>Gold</subject><subject>Lignocellulose</subject><subject>Machine learning</subject><subject>Metals</subject><subject>Nanoparticles</subject><subject>Optimization</subject><subject>Organic chemicals</subject><subject>Oxidation</subject><subject>Oxidation-reduction reaction</subject><subject>Oxidizing agents</subject><subject>Review</subject><subject>Substrates</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkk1v3CAQhq2qVROlufQXIPXSVnIKxjaml2q7yiaVttpD0jMa87FLZIMLOOr214fNRv0IHIDheWde0BTFW4IvKOX40wikJbylDXtRnBLO25Lwun75z_6kOI_xDudBKekq_ro4oayjdc3pabG_mafJh6QVuvKDQktIMOxjisj4gL5C1OUqaI1WczBzgAFtflkFyXr3Gd3uNLpJkDTyBqV8WISEwCn0HeTOOl2uNQRn3ba8dNAPucRmSna0vx_1b4pXBoaoz5_Ws-LH6vJ2eV2uN1fflot1KWvSplKZzjDQRuG-agyruao17QmDHgBLqiQlxgDBNak61mGlSNVQKjEh2EjCO3pWfDnmneZ-1Epql_I7xBTsCGEvPFjx_42zO7H194LghlFG6pzhwzHD7pnuerEWhxiuq6bJFu5JZt8_VQv-56xjEqONUg8DOO3nKLJJRjnhmGX03TP0zs_B5b84UG3bUMZppi6O1BYGLawzPpuUeSo9WumdNjbHF4xVmLOuq7Lg41Egg48xaPPHMsHi0DLib8vQB8kwsXY</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>Thuriot-Roukos, Joëlle</creator><creator>Ferraz, Camila Palombo</creator><creator>K. Al Rawas, Hisham</creator><creator>Heyte, Svetlana</creator><creator>Paul, Sébastien</creator><creator>Itabaiana Jr, Ivaldo</creator><creator>Pietrowski, Mariusz</creator><creator>Zieliński, Michal</creator><creator>Ghazzal, Mohammed N.</creator><creator>Dumeignil, Franck</creator><creator>Wojcieszak, Robert</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9727-8196</orcidid><orcidid>https://orcid.org/0000-0002-8956-5846</orcidid><orcidid>https://orcid.org/0000-0002-6599-4929</orcidid><orcidid>https://orcid.org/0000-0001-9877-9902</orcidid><orcidid>https://orcid.org/0000-0003-0725-0881</orcidid><orcidid>https://orcid.org/0000-0002-6989-5039</orcidid><orcidid>https://orcid.org/0000-0003-0490-718X</orcidid><orcidid>https://orcid.org/0000-0003-1004-8115</orcidid></search><sort><creationdate>20230922</creationdate><title>Supported Gold Catalysts for Base-Free Furfural Oxidation: The State of the Art and Machine-Learning-Enabled Optimization</title><author>Thuriot-Roukos, Joëlle ; Ferraz, Camila Palombo ; K. Al Rawas, Hisham ; Heyte, Svetlana ; Paul, Sébastien ; Itabaiana Jr, Ivaldo ; Pietrowski, Mariusz ; Zieliński, Michal ; Ghazzal, Mohammed N. ; Dumeignil, Franck ; Wojcieszak, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-df8f7aefd0b25f749d4e3b17abaa0c3dc31ffa104128780dd12533c0110fc1983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Analysis</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic oxidation</topic><topic>Cellulose</topic><topic>Chemical Sciences</topic><topic>Climate change</topic><topic>Decomposition</topic><topic>Electron transfer</topic><topic>Electron transport</topic><topic>Energy consumption</topic><topic>Furfural</topic><topic>Furoic acid</topic><topic>Glucose</topic><topic>Gold</topic><topic>Lignocellulose</topic><topic>Machine learning</topic><topic>Metals</topic><topic>Nanoparticles</topic><topic>Optimization</topic><topic>Organic chemicals</topic><topic>Oxidation</topic><topic>Oxidation-reduction reaction</topic><topic>Oxidizing agents</topic><topic>Review</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thuriot-Roukos, Joëlle</creatorcontrib><creatorcontrib>Ferraz, Camila Palombo</creatorcontrib><creatorcontrib>K. Al Rawas, Hisham</creatorcontrib><creatorcontrib>Heyte, Svetlana</creatorcontrib><creatorcontrib>Paul, Sébastien</creatorcontrib><creatorcontrib>Itabaiana Jr, Ivaldo</creatorcontrib><creatorcontrib>Pietrowski, Mariusz</creatorcontrib><creatorcontrib>Zieliński, Michal</creatorcontrib><creatorcontrib>Ghazzal, Mohammed N.</creatorcontrib><creatorcontrib>Dumeignil, Franck</creatorcontrib><creatorcontrib>Wojcieszak, Robert</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thuriot-Roukos, Joëlle</au><au>Ferraz, Camila Palombo</au><au>K. Al Rawas, Hisham</au><au>Heyte, Svetlana</au><au>Paul, Sébastien</au><au>Itabaiana Jr, Ivaldo</au><au>Pietrowski, Mariusz</au><au>Zieliński, Michal</au><au>Ghazzal, Mohammed N.</au><au>Dumeignil, Franck</au><au>Wojcieszak, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supported Gold Catalysts for Base-Free Furfural Oxidation: The State of the Art and Machine-Learning-Enabled Optimization</atitle><jtitle>Materials</jtitle><date>2023-09-22</date><risdate>2023</risdate><volume>16</volume><issue>19</issue><spage>6357</spage><pages>6357-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Supported gold nanoparticles have proven to be highly effective catalysts for the base-free oxidation of furfural, a compound derived from biomass. Their small size enables a high surface-area-to-volume ratio, providing abundant active sites for the reaction to take place. These gold nanoparticles serve as catalysts by providing surfaces for furfural molecules to adsorb onto and facilitating electron transfer between the substrate and the oxidizing agent. The role of the support in this reaction has been widely studied, and gold–support interactions have been found to be beneficial. However, the exact mechanism of furfural oxidation under base-free conditions remains an active area of research and is not yet fully understood. In this review, we delve into the essential factors that influence the selectivity of furfural oxidation. We present an optimization process that highlights the significant role of machine learning in identifying the best catalyst for this reaction. The principal objective of this study is to provide a comprehensive review of research conducted over the past five years concerning the catalytic oxidation of furfural under base-free conditions. By conducting tree decision making on experimental data from recent articles, a total of 93 gold-based catalysts are compared. The relative variable importance chart analysis reveals that the support preparation method and the pH of the solution are the most crucial factors determining the yield of furoic acid in this oxidation process.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37834493</pmid><doi>10.3390/ma16196357</doi><orcidid>https://orcid.org/0000-0001-9727-8196</orcidid><orcidid>https://orcid.org/0000-0002-8956-5846</orcidid><orcidid>https://orcid.org/0000-0002-6599-4929</orcidid><orcidid>https://orcid.org/0000-0001-9877-9902</orcidid><orcidid>https://orcid.org/0000-0003-0725-0881</orcidid><orcidid>https://orcid.org/0000-0002-6989-5039</orcidid><orcidid>https://orcid.org/0000-0003-0490-718X</orcidid><orcidid>https://orcid.org/0000-0003-1004-8115</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-09, Vol.16 (19), p.6357 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10573714 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acids Analysis Biodiesel fuels Biofuels Biomass Catalysis Catalysts Catalytic oxidation Cellulose Chemical Sciences Climate change Decomposition Electron transfer Electron transport Energy consumption Furfural Furoic acid Glucose Gold Lignocellulose Machine learning Metals Nanoparticles Optimization Organic chemicals Oxidation Oxidation-reduction reaction Oxidizing agents Review Substrates |
title | Supported Gold Catalysts for Base-Free Furfural Oxidation: The State of the Art and Machine-Learning-Enabled Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supported%20Gold%20Catalysts%20for%20Base-Free%20Furfural%20Oxidation:%20The%20State%20of%20the%20Art%20and%20Machine-Learning-Enabled%20Optimization&rft.jtitle=Materials&rft.au=Thuriot-Roukos,%20Jo%C3%ABlle&rft.date=2023-09-22&rft.volume=16&rft.issue=19&rft.spage=6357&rft.pages=6357-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16196357&rft_dat=%3Cgale_pubme%3EA772097882%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2876653793&rft_id=info:pmid/37834493&rft_galeid=A772097882&rfr_iscdi=true |