Effect of Heat Treatment Time and Temperature on the Microstructure and Shape Memory Properties of Nitinol Wires
In this study, the effect of heat treatment parameters on the optimized performance of Ni-rich nickel–titanium wires (NiTi/Nitinol) were investigated that were intended for application as actuators across various industries. In this instance, the maximum recovery strain and actuation angle achievabl...
Gespeichert in:
Veröffentlicht in: | Materials 2023-09, Vol.16 (19), p.6480 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 6480 |
container_title | Materials |
container_volume | 16 |
creator | Agarwal, Neha Ryan Murphy, Josephine Hashemi, Tina Sadat Mossop, Theo O’Neill, Darragh Power, John Shayegh, Ali Brabazon, Dermot |
description | In this study, the effect of heat treatment parameters on the optimized performance of Ni-rich nickel–titanium wires (NiTi/Nitinol) were investigated that were intended for application as actuators across various industries. In this instance, the maximum recovery strain and actuation angle achievable by a nitinol wire were employed as indicators of optimal performance. Nitinol wires were heat treated at different temperatures, 400–500 °C, and times, 30–120 min, to study the effects of these heat treatment parameters on the actuation performance and properties of the nitinol wires. Assessment covered changes in density, hardness, phase transition temperatures, microstructure, and alloy composition resulting from these heat treatments. DSC analysis revealed a decrease in the austenite transformation temperature, which transitioned from 42.8 °C to 24.39 °C with an increase in heat treatment temperature from 400 °C to 500 °C and was attributed to the formation of Ni4Ti3 precipitates. Increasing the heat treatment time led to an increase in the austenite transformation temperature. A negative correlation between the hardness of the heat-treated samples and the heat treatment temperature was found. This trend can be attributed to the formation and growth of Ni4Ti3 precipitates, which in turn affect the matrix properties. A novel approach involving image analysis was utilized as a simple yet robust analysis method for measurement of recovery strain for the wires as they underwent actuation. It was found that increasing heat treatment temperature from 400 °C to 500 °C above 30 min raised recovery strain from 0.001 to 0.01, thereby maximizing the shape memory effect. |
doi_str_mv | 10.3390/ma16196480 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10573343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772098078</galeid><sourcerecordid>A772098078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-c334f8cde48ffe96be22b4249f1b749fee089c9154c0d1e3230f5798fc365a93</originalsourceid><addsrcrecordid>eNpdUVFrHCEQltLQhCQv_QVCX0rhUl29VZ9KCGkTSNNCD_oonjvmDKtu1Q3k39fthaaNwjjMfN83Mw5Cbyk5Y0yRj8HQnqqeS_IKHVGl-hVVnL_-xz9Ep6Xck3YYo7JTb9AhE5LxnoojNF06B7bi5PAVmIo3udkAsXk-ADZxwBsIE2RT5ww4RVx3gL96m1OpebZ_ogvqx85MLQEh5Uf8PadGqR7KInzrq49pxD99hnKCDpwZC5w-vcdo8_lyc3G1uvn25fri_GZlecfqyjLGnbQDcNkaVP0Wum7LO64c3YpmAYhUVtE1t2SgwDpG3Foo6Szr10axY_RpLzvN2wCDbRNlM-op-2Dyo07G6_8z0e_0XXrQlKxFq82awvsnhZx-zVCqDr5YGEcTIc1Fd1IIpqgUvEHfvYDepznHNt6C6ntBOZcNdbZH3ZkRtI8utcK23QGCtymC8y1-LkRHlCRiIXzYE5bPLhnc3_Yp0cvy9fPy2W8CjKCY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876671448</pqid></control><display><type>article</type><title>Effect of Heat Treatment Time and Temperature on the Microstructure and Shape Memory Properties of Nitinol Wires</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Agarwal, Neha ; Ryan Murphy, Josephine ; Hashemi, Tina Sadat ; Mossop, Theo ; O’Neill, Darragh ; Power, John ; Shayegh, Ali ; Brabazon, Dermot</creator><creatorcontrib>Agarwal, Neha ; Ryan Murphy, Josephine ; Hashemi, Tina Sadat ; Mossop, Theo ; O’Neill, Darragh ; Power, John ; Shayegh, Ali ; Brabazon, Dermot</creatorcontrib><description>In this study, the effect of heat treatment parameters on the optimized performance of Ni-rich nickel–titanium wires (NiTi/Nitinol) were investigated that were intended for application as actuators across various industries. In this instance, the maximum recovery strain and actuation angle achievable by a nitinol wire were employed as indicators of optimal performance. Nitinol wires were heat treated at different temperatures, 400–500 °C, and times, 30–120 min, to study the effects of these heat treatment parameters on the actuation performance and properties of the nitinol wires. Assessment covered changes in density, hardness, phase transition temperatures, microstructure, and alloy composition resulting from these heat treatments. DSC analysis revealed a decrease in the austenite transformation temperature, which transitioned from 42.8 °C to 24.39 °C with an increase in heat treatment temperature from 400 °C to 500 °C and was attributed to the formation of Ni4Ti3 precipitates. Increasing the heat treatment time led to an increase in the austenite transformation temperature. A negative correlation between the hardness of the heat-treated samples and the heat treatment temperature was found. This trend can be attributed to the formation and growth of Ni4Ti3 precipitates, which in turn affect the matrix properties. A novel approach involving image analysis was utilized as a simple yet robust analysis method for measurement of recovery strain for the wires as they underwent actuation. It was found that increasing heat treatment temperature from 400 °C to 500 °C above 30 min raised recovery strain from 0.001 to 0.01, thereby maximizing the shape memory effect.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16196480</identifier><identifier>PMID: 37834617</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Actuation ; Actuators ; Analysis ; Austenite ; Crystal structure ; Crystals ; Energy consumption ; Hardness ; Heat treating ; Image analysis ; Intermetallic compounds ; Martensitic transformations ; Microstructure ; Nickel alloys ; Nickel compounds ; Nickel titanides ; Optimization ; Parameters ; Phase transitions ; Precipitates ; Precipitation heat treatment ; Recovery ; Shape effects ; Shape memory alloys ; Structure ; Temperature effects ; Titanium ; Titanium alloys ; Transformation temperature ; Wire</subject><ispartof>Materials, 2023-09, Vol.16 (19), p.6480</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-c334f8cde48ffe96be22b4249f1b749fee089c9154c0d1e3230f5798fc365a93</citedby><cites>FETCH-LOGICAL-c423t-c334f8cde48ffe96be22b4249f1b749fee089c9154c0d1e3230f5798fc365a93</cites><orcidid>0000-0002-8221-3047 ; 0009-0004-3680-8842 ; 0009-0001-7692-9014 ; 0000-0003-3214-6381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573343/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573343/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Agarwal, Neha</creatorcontrib><creatorcontrib>Ryan Murphy, Josephine</creatorcontrib><creatorcontrib>Hashemi, Tina Sadat</creatorcontrib><creatorcontrib>Mossop, Theo</creatorcontrib><creatorcontrib>O’Neill, Darragh</creatorcontrib><creatorcontrib>Power, John</creatorcontrib><creatorcontrib>Shayegh, Ali</creatorcontrib><creatorcontrib>Brabazon, Dermot</creatorcontrib><title>Effect of Heat Treatment Time and Temperature on the Microstructure and Shape Memory Properties of Nitinol Wires</title><title>Materials</title><description>In this study, the effect of heat treatment parameters on the optimized performance of Ni-rich nickel–titanium wires (NiTi/Nitinol) were investigated that were intended for application as actuators across various industries. In this instance, the maximum recovery strain and actuation angle achievable by a nitinol wire were employed as indicators of optimal performance. Nitinol wires were heat treated at different temperatures, 400–500 °C, and times, 30–120 min, to study the effects of these heat treatment parameters on the actuation performance and properties of the nitinol wires. Assessment covered changes in density, hardness, phase transition temperatures, microstructure, and alloy composition resulting from these heat treatments. DSC analysis revealed a decrease in the austenite transformation temperature, which transitioned from 42.8 °C to 24.39 °C with an increase in heat treatment temperature from 400 °C to 500 °C and was attributed to the formation of Ni4Ti3 precipitates. Increasing the heat treatment time led to an increase in the austenite transformation temperature. A negative correlation between the hardness of the heat-treated samples and the heat treatment temperature was found. This trend can be attributed to the formation and growth of Ni4Ti3 precipitates, which in turn affect the matrix properties. A novel approach involving image analysis was utilized as a simple yet robust analysis method for measurement of recovery strain for the wires as they underwent actuation. It was found that increasing heat treatment temperature from 400 °C to 500 °C above 30 min raised recovery strain from 0.001 to 0.01, thereby maximizing the shape memory effect.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Analysis</subject><subject>Austenite</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Energy consumption</subject><subject>Hardness</subject><subject>Heat treating</subject><subject>Image analysis</subject><subject>Intermetallic compounds</subject><subject>Martensitic transformations</subject><subject>Microstructure</subject><subject>Nickel alloys</subject><subject>Nickel compounds</subject><subject>Nickel titanides</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Phase transitions</subject><subject>Precipitates</subject><subject>Precipitation heat treatment</subject><subject>Recovery</subject><subject>Shape effects</subject><subject>Shape memory alloys</subject><subject>Structure</subject><subject>Temperature effects</subject><subject>Titanium</subject><subject>Titanium alloys</subject><subject>Transformation temperature</subject><subject>Wire</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUVFrHCEQltLQhCQv_QVCX0rhUl29VZ9KCGkTSNNCD_oonjvmDKtu1Q3k39fthaaNwjjMfN83Mw5Cbyk5Y0yRj8HQnqqeS_IKHVGl-hVVnL_-xz9Ep6Xck3YYo7JTb9AhE5LxnoojNF06B7bi5PAVmIo3udkAsXk-ADZxwBsIE2RT5ww4RVx3gL96m1OpebZ_ogvqx85MLQEh5Uf8PadGqR7KInzrq49pxD99hnKCDpwZC5w-vcdo8_lyc3G1uvn25fri_GZlecfqyjLGnbQDcNkaVP0Wum7LO64c3YpmAYhUVtE1t2SgwDpG3Foo6Szr10axY_RpLzvN2wCDbRNlM-op-2Dyo07G6_8z0e_0XXrQlKxFq82awvsnhZx-zVCqDr5YGEcTIc1Fd1IIpqgUvEHfvYDepznHNt6C6ntBOZcNdbZH3ZkRtI8utcK23QGCtymC8y1-LkRHlCRiIXzYE5bPLhnc3_Yp0cvy9fPy2W8CjKCY</recordid><startdate>20230929</startdate><enddate>20230929</enddate><creator>Agarwal, Neha</creator><creator>Ryan Murphy, Josephine</creator><creator>Hashemi, Tina Sadat</creator><creator>Mossop, Theo</creator><creator>O’Neill, Darragh</creator><creator>Power, John</creator><creator>Shayegh, Ali</creator><creator>Brabazon, Dermot</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8221-3047</orcidid><orcidid>https://orcid.org/0009-0004-3680-8842</orcidid><orcidid>https://orcid.org/0009-0001-7692-9014</orcidid><orcidid>https://orcid.org/0000-0003-3214-6381</orcidid></search><sort><creationdate>20230929</creationdate><title>Effect of Heat Treatment Time and Temperature on the Microstructure and Shape Memory Properties of Nitinol Wires</title><author>Agarwal, Neha ; Ryan Murphy, Josephine ; Hashemi, Tina Sadat ; Mossop, Theo ; O’Neill, Darragh ; Power, John ; Shayegh, Ali ; Brabazon, Dermot</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-c334f8cde48ffe96be22b4249f1b749fee089c9154c0d1e3230f5798fc365a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Analysis</topic><topic>Austenite</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Energy consumption</topic><topic>Hardness</topic><topic>Heat treating</topic><topic>Image analysis</topic><topic>Intermetallic compounds</topic><topic>Martensitic transformations</topic><topic>Microstructure</topic><topic>Nickel alloys</topic><topic>Nickel compounds</topic><topic>Nickel titanides</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Phase transitions</topic><topic>Precipitates</topic><topic>Precipitation heat treatment</topic><topic>Recovery</topic><topic>Shape effects</topic><topic>Shape memory alloys</topic><topic>Structure</topic><topic>Temperature effects</topic><topic>Titanium</topic><topic>Titanium alloys</topic><topic>Transformation temperature</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, Neha</creatorcontrib><creatorcontrib>Ryan Murphy, Josephine</creatorcontrib><creatorcontrib>Hashemi, Tina Sadat</creatorcontrib><creatorcontrib>Mossop, Theo</creatorcontrib><creatorcontrib>O’Neill, Darragh</creatorcontrib><creatorcontrib>Power, John</creatorcontrib><creatorcontrib>Shayegh, Ali</creatorcontrib><creatorcontrib>Brabazon, Dermot</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agarwal, Neha</au><au>Ryan Murphy, Josephine</au><au>Hashemi, Tina Sadat</au><au>Mossop, Theo</au><au>O’Neill, Darragh</au><au>Power, John</au><au>Shayegh, Ali</au><au>Brabazon, Dermot</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Heat Treatment Time and Temperature on the Microstructure and Shape Memory Properties of Nitinol Wires</atitle><jtitle>Materials</jtitle><date>2023-09-29</date><risdate>2023</risdate><volume>16</volume><issue>19</issue><spage>6480</spage><pages>6480-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this study, the effect of heat treatment parameters on the optimized performance of Ni-rich nickel–titanium wires (NiTi/Nitinol) were investigated that were intended for application as actuators across various industries. In this instance, the maximum recovery strain and actuation angle achievable by a nitinol wire were employed as indicators of optimal performance. Nitinol wires were heat treated at different temperatures, 400–500 °C, and times, 30–120 min, to study the effects of these heat treatment parameters on the actuation performance and properties of the nitinol wires. Assessment covered changes in density, hardness, phase transition temperatures, microstructure, and alloy composition resulting from these heat treatments. DSC analysis revealed a decrease in the austenite transformation temperature, which transitioned from 42.8 °C to 24.39 °C with an increase in heat treatment temperature from 400 °C to 500 °C and was attributed to the formation of Ni4Ti3 precipitates. Increasing the heat treatment time led to an increase in the austenite transformation temperature. A negative correlation between the hardness of the heat-treated samples and the heat treatment temperature was found. This trend can be attributed to the formation and growth of Ni4Ti3 precipitates, which in turn affect the matrix properties. A novel approach involving image analysis was utilized as a simple yet robust analysis method for measurement of recovery strain for the wires as they underwent actuation. It was found that increasing heat treatment temperature from 400 °C to 500 °C above 30 min raised recovery strain from 0.001 to 0.01, thereby maximizing the shape memory effect.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37834617</pmid><doi>10.3390/ma16196480</doi><orcidid>https://orcid.org/0000-0002-8221-3047</orcidid><orcidid>https://orcid.org/0009-0004-3680-8842</orcidid><orcidid>https://orcid.org/0009-0001-7692-9014</orcidid><orcidid>https://orcid.org/0000-0003-3214-6381</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-09, Vol.16 (19), p.6480 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10573343 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Actuation Actuators Analysis Austenite Crystal structure Crystals Energy consumption Hardness Heat treating Image analysis Intermetallic compounds Martensitic transformations Microstructure Nickel alloys Nickel compounds Nickel titanides Optimization Parameters Phase transitions Precipitates Precipitation heat treatment Recovery Shape effects Shape memory alloys Structure Temperature effects Titanium Titanium alloys Transformation temperature Wire |
title | Effect of Heat Treatment Time and Temperature on the Microstructure and Shape Memory Properties of Nitinol Wires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Heat%20Treatment%20Time%20and%20Temperature%20on%20the%20Microstructure%20and%20Shape%20Memory%20Properties%20of%20Nitinol%20Wires&rft.jtitle=Materials&rft.au=Agarwal,%20Neha&rft.date=2023-09-29&rft.volume=16&rft.issue=19&rft.spage=6480&rft.pages=6480-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16196480&rft_dat=%3Cgale_pubme%3EA772098078%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2876671448&rft_id=info:pmid/37834617&rft_galeid=A772098078&rfr_iscdi=true |