Effect of Heat Treatment Time and Temperature on the Microstructure and Shape Memory Properties of Nitinol Wires

In this study, the effect of heat treatment parameters on the optimized performance of Ni-rich nickel–titanium wires (NiTi/Nitinol) were investigated that were intended for application as actuators across various industries. In this instance, the maximum recovery strain and actuation angle achievabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-09, Vol.16 (19), p.6480
Hauptverfasser: Agarwal, Neha, Ryan Murphy, Josephine, Hashemi, Tina Sadat, Mossop, Theo, O’Neill, Darragh, Power, John, Shayegh, Ali, Brabazon, Dermot
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 6480
container_title Materials
container_volume 16
creator Agarwal, Neha
Ryan Murphy, Josephine
Hashemi, Tina Sadat
Mossop, Theo
O’Neill, Darragh
Power, John
Shayegh, Ali
Brabazon, Dermot
description In this study, the effect of heat treatment parameters on the optimized performance of Ni-rich nickel–titanium wires (NiTi/Nitinol) were investigated that were intended for application as actuators across various industries. In this instance, the maximum recovery strain and actuation angle achievable by a nitinol wire were employed as indicators of optimal performance. Nitinol wires were heat treated at different temperatures, 400–500 °C, and times, 30–120 min, to study the effects of these heat treatment parameters on the actuation performance and properties of the nitinol wires. Assessment covered changes in density, hardness, phase transition temperatures, microstructure, and alloy composition resulting from these heat treatments. DSC analysis revealed a decrease in the austenite transformation temperature, which transitioned from 42.8 °C to 24.39 °C with an increase in heat treatment temperature from 400 °C to 500 °C and was attributed to the formation of Ni4Ti3 precipitates. Increasing the heat treatment time led to an increase in the austenite transformation temperature. A negative correlation between the hardness of the heat-treated samples and the heat treatment temperature was found. This trend can be attributed to the formation and growth of Ni4Ti3 precipitates, which in turn affect the matrix properties. A novel approach involving image analysis was utilized as a simple yet robust analysis method for measurement of recovery strain for the wires as they underwent actuation. It was found that increasing heat treatment temperature from 400 °C to 500 °C above 30 min raised recovery strain from 0.001 to 0.01, thereby maximizing the shape memory effect.
doi_str_mv 10.3390/ma16196480
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10573343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772098078</galeid><sourcerecordid>A772098078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-c334f8cde48ffe96be22b4249f1b749fee089c9154c0d1e3230f5798fc365a93</originalsourceid><addsrcrecordid>eNpdUVFrHCEQltLQhCQv_QVCX0rhUl29VZ9KCGkTSNNCD_oonjvmDKtu1Q3k39fthaaNwjjMfN83Mw5Cbyk5Y0yRj8HQnqqeS_IKHVGl-hVVnL_-xz9Ep6Xck3YYo7JTb9AhE5LxnoojNF06B7bi5PAVmIo3udkAsXk-ADZxwBsIE2RT5ww4RVx3gL96m1OpebZ_ogvqx85MLQEh5Uf8PadGqR7KInzrq49pxD99hnKCDpwZC5w-vcdo8_lyc3G1uvn25fri_GZlecfqyjLGnbQDcNkaVP0Wum7LO64c3YpmAYhUVtE1t2SgwDpG3Foo6Szr10axY_RpLzvN2wCDbRNlM-op-2Dyo07G6_8z0e_0XXrQlKxFq82awvsnhZx-zVCqDr5YGEcTIc1Fd1IIpqgUvEHfvYDepznHNt6C6ntBOZcNdbZH3ZkRtI8utcK23QGCtymC8y1-LkRHlCRiIXzYE5bPLhnc3_Yp0cvy9fPy2W8CjKCY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876671448</pqid></control><display><type>article</type><title>Effect of Heat Treatment Time and Temperature on the Microstructure and Shape Memory Properties of Nitinol Wires</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Agarwal, Neha ; Ryan Murphy, Josephine ; Hashemi, Tina Sadat ; Mossop, Theo ; O’Neill, Darragh ; Power, John ; Shayegh, Ali ; Brabazon, Dermot</creator><creatorcontrib>Agarwal, Neha ; Ryan Murphy, Josephine ; Hashemi, Tina Sadat ; Mossop, Theo ; O’Neill, Darragh ; Power, John ; Shayegh, Ali ; Brabazon, Dermot</creatorcontrib><description>In this study, the effect of heat treatment parameters on the optimized performance of Ni-rich nickel–titanium wires (NiTi/Nitinol) were investigated that were intended for application as actuators across various industries. In this instance, the maximum recovery strain and actuation angle achievable by a nitinol wire were employed as indicators of optimal performance. Nitinol wires were heat treated at different temperatures, 400–500 °C, and times, 30–120 min, to study the effects of these heat treatment parameters on the actuation performance and properties of the nitinol wires. Assessment covered changes in density, hardness, phase transition temperatures, microstructure, and alloy composition resulting from these heat treatments. DSC analysis revealed a decrease in the austenite transformation temperature, which transitioned from 42.8 °C to 24.39 °C with an increase in heat treatment temperature from 400 °C to 500 °C and was attributed to the formation of Ni4Ti3 precipitates. Increasing the heat treatment time led to an increase in the austenite transformation temperature. A negative correlation between the hardness of the heat-treated samples and the heat treatment temperature was found. This trend can be attributed to the formation and growth of Ni4Ti3 precipitates, which in turn affect the matrix properties. A novel approach involving image analysis was utilized as a simple yet robust analysis method for measurement of recovery strain for the wires as they underwent actuation. It was found that increasing heat treatment temperature from 400 °C to 500 °C above 30 min raised recovery strain from 0.001 to 0.01, thereby maximizing the shape memory effect.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16196480</identifier><identifier>PMID: 37834617</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Actuation ; Actuators ; Analysis ; Austenite ; Crystal structure ; Crystals ; Energy consumption ; Hardness ; Heat treating ; Image analysis ; Intermetallic compounds ; Martensitic transformations ; Microstructure ; Nickel alloys ; Nickel compounds ; Nickel titanides ; Optimization ; Parameters ; Phase transitions ; Precipitates ; Precipitation heat treatment ; Recovery ; Shape effects ; Shape memory alloys ; Structure ; Temperature effects ; Titanium ; Titanium alloys ; Transformation temperature ; Wire</subject><ispartof>Materials, 2023-09, Vol.16 (19), p.6480</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-c334f8cde48ffe96be22b4249f1b749fee089c9154c0d1e3230f5798fc365a93</citedby><cites>FETCH-LOGICAL-c423t-c334f8cde48ffe96be22b4249f1b749fee089c9154c0d1e3230f5798fc365a93</cites><orcidid>0000-0002-8221-3047 ; 0009-0004-3680-8842 ; 0009-0001-7692-9014 ; 0000-0003-3214-6381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573343/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573343/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Agarwal, Neha</creatorcontrib><creatorcontrib>Ryan Murphy, Josephine</creatorcontrib><creatorcontrib>Hashemi, Tina Sadat</creatorcontrib><creatorcontrib>Mossop, Theo</creatorcontrib><creatorcontrib>O’Neill, Darragh</creatorcontrib><creatorcontrib>Power, John</creatorcontrib><creatorcontrib>Shayegh, Ali</creatorcontrib><creatorcontrib>Brabazon, Dermot</creatorcontrib><title>Effect of Heat Treatment Time and Temperature on the Microstructure and Shape Memory Properties of Nitinol Wires</title><title>Materials</title><description>In this study, the effect of heat treatment parameters on the optimized performance of Ni-rich nickel–titanium wires (NiTi/Nitinol) were investigated that were intended for application as actuators across various industries. In this instance, the maximum recovery strain and actuation angle achievable by a nitinol wire were employed as indicators of optimal performance. Nitinol wires were heat treated at different temperatures, 400–500 °C, and times, 30–120 min, to study the effects of these heat treatment parameters on the actuation performance and properties of the nitinol wires. Assessment covered changes in density, hardness, phase transition temperatures, microstructure, and alloy composition resulting from these heat treatments. DSC analysis revealed a decrease in the austenite transformation temperature, which transitioned from 42.8 °C to 24.39 °C with an increase in heat treatment temperature from 400 °C to 500 °C and was attributed to the formation of Ni4Ti3 precipitates. Increasing the heat treatment time led to an increase in the austenite transformation temperature. A negative correlation between the hardness of the heat-treated samples and the heat treatment temperature was found. This trend can be attributed to the formation and growth of Ni4Ti3 precipitates, which in turn affect the matrix properties. A novel approach involving image analysis was utilized as a simple yet robust analysis method for measurement of recovery strain for the wires as they underwent actuation. It was found that increasing heat treatment temperature from 400 °C to 500 °C above 30 min raised recovery strain from 0.001 to 0.01, thereby maximizing the shape memory effect.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Analysis</subject><subject>Austenite</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Energy consumption</subject><subject>Hardness</subject><subject>Heat treating</subject><subject>Image analysis</subject><subject>Intermetallic compounds</subject><subject>Martensitic transformations</subject><subject>Microstructure</subject><subject>Nickel alloys</subject><subject>Nickel compounds</subject><subject>Nickel titanides</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Phase transitions</subject><subject>Precipitates</subject><subject>Precipitation heat treatment</subject><subject>Recovery</subject><subject>Shape effects</subject><subject>Shape memory alloys</subject><subject>Structure</subject><subject>Temperature effects</subject><subject>Titanium</subject><subject>Titanium alloys</subject><subject>Transformation temperature</subject><subject>Wire</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUVFrHCEQltLQhCQv_QVCX0rhUl29VZ9KCGkTSNNCD_oonjvmDKtu1Q3k39fthaaNwjjMfN83Mw5Cbyk5Y0yRj8HQnqqeS_IKHVGl-hVVnL_-xz9Ep6Xck3YYo7JTb9AhE5LxnoojNF06B7bi5PAVmIo3udkAsXk-ADZxwBsIE2RT5ww4RVx3gL96m1OpebZ_ogvqx85MLQEh5Uf8PadGqR7KInzrq49pxD99hnKCDpwZC5w-vcdo8_lyc3G1uvn25fri_GZlecfqyjLGnbQDcNkaVP0Wum7LO64c3YpmAYhUVtE1t2SgwDpG3Foo6Szr10axY_RpLzvN2wCDbRNlM-op-2Dyo07G6_8z0e_0XXrQlKxFq82awvsnhZx-zVCqDr5YGEcTIc1Fd1IIpqgUvEHfvYDepznHNt6C6ntBOZcNdbZH3ZkRtI8utcK23QGCtymC8y1-LkRHlCRiIXzYE5bPLhnc3_Yp0cvy9fPy2W8CjKCY</recordid><startdate>20230929</startdate><enddate>20230929</enddate><creator>Agarwal, Neha</creator><creator>Ryan Murphy, Josephine</creator><creator>Hashemi, Tina Sadat</creator><creator>Mossop, Theo</creator><creator>O’Neill, Darragh</creator><creator>Power, John</creator><creator>Shayegh, Ali</creator><creator>Brabazon, Dermot</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8221-3047</orcidid><orcidid>https://orcid.org/0009-0004-3680-8842</orcidid><orcidid>https://orcid.org/0009-0001-7692-9014</orcidid><orcidid>https://orcid.org/0000-0003-3214-6381</orcidid></search><sort><creationdate>20230929</creationdate><title>Effect of Heat Treatment Time and Temperature on the Microstructure and Shape Memory Properties of Nitinol Wires</title><author>Agarwal, Neha ; Ryan Murphy, Josephine ; Hashemi, Tina Sadat ; Mossop, Theo ; O’Neill, Darragh ; Power, John ; Shayegh, Ali ; Brabazon, Dermot</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-c334f8cde48ffe96be22b4249f1b749fee089c9154c0d1e3230f5798fc365a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Analysis</topic><topic>Austenite</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Energy consumption</topic><topic>Hardness</topic><topic>Heat treating</topic><topic>Image analysis</topic><topic>Intermetallic compounds</topic><topic>Martensitic transformations</topic><topic>Microstructure</topic><topic>Nickel alloys</topic><topic>Nickel compounds</topic><topic>Nickel titanides</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Phase transitions</topic><topic>Precipitates</topic><topic>Precipitation heat treatment</topic><topic>Recovery</topic><topic>Shape effects</topic><topic>Shape memory alloys</topic><topic>Structure</topic><topic>Temperature effects</topic><topic>Titanium</topic><topic>Titanium alloys</topic><topic>Transformation temperature</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, Neha</creatorcontrib><creatorcontrib>Ryan Murphy, Josephine</creatorcontrib><creatorcontrib>Hashemi, Tina Sadat</creatorcontrib><creatorcontrib>Mossop, Theo</creatorcontrib><creatorcontrib>O’Neill, Darragh</creatorcontrib><creatorcontrib>Power, John</creatorcontrib><creatorcontrib>Shayegh, Ali</creatorcontrib><creatorcontrib>Brabazon, Dermot</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agarwal, Neha</au><au>Ryan Murphy, Josephine</au><au>Hashemi, Tina Sadat</au><au>Mossop, Theo</au><au>O’Neill, Darragh</au><au>Power, John</au><au>Shayegh, Ali</au><au>Brabazon, Dermot</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Heat Treatment Time and Temperature on the Microstructure and Shape Memory Properties of Nitinol Wires</atitle><jtitle>Materials</jtitle><date>2023-09-29</date><risdate>2023</risdate><volume>16</volume><issue>19</issue><spage>6480</spage><pages>6480-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this study, the effect of heat treatment parameters on the optimized performance of Ni-rich nickel–titanium wires (NiTi/Nitinol) were investigated that were intended for application as actuators across various industries. In this instance, the maximum recovery strain and actuation angle achievable by a nitinol wire were employed as indicators of optimal performance. Nitinol wires were heat treated at different temperatures, 400–500 °C, and times, 30–120 min, to study the effects of these heat treatment parameters on the actuation performance and properties of the nitinol wires. Assessment covered changes in density, hardness, phase transition temperatures, microstructure, and alloy composition resulting from these heat treatments. DSC analysis revealed a decrease in the austenite transformation temperature, which transitioned from 42.8 °C to 24.39 °C with an increase in heat treatment temperature from 400 °C to 500 °C and was attributed to the formation of Ni4Ti3 precipitates. Increasing the heat treatment time led to an increase in the austenite transformation temperature. A negative correlation between the hardness of the heat-treated samples and the heat treatment temperature was found. This trend can be attributed to the formation and growth of Ni4Ti3 precipitates, which in turn affect the matrix properties. A novel approach involving image analysis was utilized as a simple yet robust analysis method for measurement of recovery strain for the wires as they underwent actuation. It was found that increasing heat treatment temperature from 400 °C to 500 °C above 30 min raised recovery strain from 0.001 to 0.01, thereby maximizing the shape memory effect.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37834617</pmid><doi>10.3390/ma16196480</doi><orcidid>https://orcid.org/0000-0002-8221-3047</orcidid><orcidid>https://orcid.org/0009-0004-3680-8842</orcidid><orcidid>https://orcid.org/0009-0001-7692-9014</orcidid><orcidid>https://orcid.org/0000-0003-3214-6381</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-09, Vol.16 (19), p.6480
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10573343
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Actuation
Actuators
Analysis
Austenite
Crystal structure
Crystals
Energy consumption
Hardness
Heat treating
Image analysis
Intermetallic compounds
Martensitic transformations
Microstructure
Nickel alloys
Nickel compounds
Nickel titanides
Optimization
Parameters
Phase transitions
Precipitates
Precipitation heat treatment
Recovery
Shape effects
Shape memory alloys
Structure
Temperature effects
Titanium
Titanium alloys
Transformation temperature
Wire
title Effect of Heat Treatment Time and Temperature on the Microstructure and Shape Memory Properties of Nitinol Wires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Heat%20Treatment%20Time%20and%20Temperature%20on%20the%20Microstructure%20and%20Shape%20Memory%20Properties%20of%20Nitinol%20Wires&rft.jtitle=Materials&rft.au=Agarwal,%20Neha&rft.date=2023-09-29&rft.volume=16&rft.issue=19&rft.spage=6480&rft.pages=6480-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16196480&rft_dat=%3Cgale_pubme%3EA772098078%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2876671448&rft_id=info:pmid/37834617&rft_galeid=A772098078&rfr_iscdi=true