Synthetic Control of the Defect Structure and Hierarchical Extra-Large-/Small-Pore Microporosity in Aluminosilicate Zeolite SWY

The SWY-type aluminosilicate zeolite, STA-30, has been synthesized via different routes to understand its defect chemistry and solid acidity. The synthetic parameters varied were the gel aging, the Al source, and the organic structure directing agent. All syntheses give crystalline materials with si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-10, Vol.145 (40), p.22097-22114
Hauptverfasser: Chitac, Ruxandra G., Zholobenko, Vladimir L., Fletcher, Robin S., Softley, Emma, Bradley, Jonathan, Mayoral, Alvaro, Turrina, Alessandro, Wright, Paul A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22114
container_issue 40
container_start_page 22097
container_title Journal of the American Chemical Society
container_volume 145
creator Chitac, Ruxandra G.
Zholobenko, Vladimir L.
Fletcher, Robin S.
Softley, Emma
Bradley, Jonathan
Mayoral, Alvaro
Turrina, Alessandro
Wright, Paul A.
description The SWY-type aluminosilicate zeolite, STA-30, has been synthesized via different routes to understand its defect chemistry and solid acidity. The synthetic parameters varied were the gel aging, the Al source, and the organic structure directing agent. All syntheses give crystalline materials with similar Si/Al ratios (6–7) that are stable in the activated K,H-form and closely similar by powder X-ray diffraction. However, they exhibit major differences in the crystal morphology and in their intracrystalline porosity and silanol concentrations. The diDABCO-C82+ (1,1′-(octane-1,8-diyl)­bis­(1,4-diazabicyclo[2.2.2]­octan)-1-ium)-templated STA-30 samples (but not those templated by bisquinuclidinium octane, diQuin-C82+) possess hierarchical microporosity, consisting of noncrystallographic extra-large micropores (13 Å) that connect with the characteristic swy and gme cages of the SWY structure. This results in pore volumes up to 30% greater than those measured in activated diQuin-C8_STA-30 as well as higher concentrations of silanols and fewer Brønsted acid sites (BASs). The hierarchical porosity is demonstrated by isopentane adsorption and the FTIR of adsorbed pyridine, which shows that up to 77% of the BASs are accessible (remarkable for a zeolite that has a small-pore crystal structure). A structural model of single can/d6r column vacancies is proposed for the extra-large micropores, which is revealed unambiguously by high-resolution scanning transmission electron microscopy. STA-30 can therefore be prepared as a hierarchically porous zeolite via direct synthesis. The additional noncrystallographic porosity and, subsequently, the amount of SiOHs in the zeolites can be enhanced or strongly reduced by the choice of crystallization conditions.
doi_str_mv 10.1021/jacs.3c07873
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10571081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869613251</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-f55698af4ca45ddd22baebac3e685d926b273ba47dfbbe7121af337e613c443c3</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxYMo7rh68wPk6MHezZ9Op-cky7i6wojCKKKXUJ2u3smQ7swmaXFOfnUz7KAIgqeiKi8_XtUj5DlnF5wJfrkDmy6kZbrV8gFZcCVYpbhoHpIFY0xUum3kGXmS0q60tWj5Y3ImtVZKinZBfm4OU95idpauwpRj8DQMtEzoaxzQZrrJcbZ5jkhh6umNwwjRbp0FT69_5AjVGuItVpebEbyvPoYifO9sDPsQQ3L5QN1Er_w8uqm0vvzLSL9h8K7UzZevT8mjAXzCZ6d6Tj6_uf60uqnWH96-W12tKyiWczUo1SxbGGoLter7XogOsAMrsWlVvxRNJ7TsoNb90HWoueAwSKmx4dLWtbTynLy65-7nbsTeYtkVvNlHN0I8mADO_P0yua25Dd8NZ0pz1vJCeHEixHA3Y8pmdMmi9zBhmJORXMlG1XrZ_lcq2mZZnAl1pL68l5aTpRRx-G2JM3PM1xzzNad8_5CPw12Y41SO9m_pL8CXp7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869613251</pqid></control><display><type>article</type><title>Synthetic Control of the Defect Structure and Hierarchical Extra-Large-/Small-Pore Microporosity in Aluminosilicate Zeolite SWY</title><source>American Chemical Society Journals</source><creator>Chitac, Ruxandra G. ; Zholobenko, Vladimir L. ; Fletcher, Robin S. ; Softley, Emma ; Bradley, Jonathan ; Mayoral, Alvaro ; Turrina, Alessandro ; Wright, Paul A.</creator><creatorcontrib>Chitac, Ruxandra G. ; Zholobenko, Vladimir L. ; Fletcher, Robin S. ; Softley, Emma ; Bradley, Jonathan ; Mayoral, Alvaro ; Turrina, Alessandro ; Wright, Paul A.</creatorcontrib><description>The SWY-type aluminosilicate zeolite, STA-30, has been synthesized via different routes to understand its defect chemistry and solid acidity. The synthetic parameters varied were the gel aging, the Al source, and the organic structure directing agent. All syntheses give crystalline materials with similar Si/Al ratios (6–7) that are stable in the activated K,H-form and closely similar by powder X-ray diffraction. However, they exhibit major differences in the crystal morphology and in their intracrystalline porosity and silanol concentrations. The diDABCO-C82+ (1,1′-(octane-1,8-diyl)­bis­(1,4-diazabicyclo[2.2.2]­octan)-1-ium)-templated STA-30 samples (but not those templated by bisquinuclidinium octane, diQuin-C82+) possess hierarchical microporosity, consisting of noncrystallographic extra-large micropores (13 Å) that connect with the characteristic swy and gme cages of the SWY structure. This results in pore volumes up to 30% greater than those measured in activated diQuin-C8_STA-30 as well as higher concentrations of silanols and fewer Brønsted acid sites (BASs). The hierarchical porosity is demonstrated by isopentane adsorption and the FTIR of adsorbed pyridine, which shows that up to 77% of the BASs are accessible (remarkable for a zeolite that has a small-pore crystal structure). A structural model of single can/d6r column vacancies is proposed for the extra-large micropores, which is revealed unambiguously by high-resolution scanning transmission electron microscopy. STA-30 can therefore be prepared as a hierarchically porous zeolite via direct synthesis. The additional noncrystallographic porosity and, subsequently, the amount of SiOHs in the zeolites can be enhanced or strongly reduced by the choice of crystallization conditions.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c07873</identifier><identifier>PMID: 37755328</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>acidity ; adsorption ; aluminum silicates ; crystal structure ; crystallization ; gels ; micropores ; octane ; pentane ; porosity ; pyridines ; transmission electron microscopy ; X-ray diffraction ; zeolites</subject><ispartof>Journal of the American Chemical Society, 2023-10, Vol.145 (40), p.22097-22114</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-f55698af4ca45ddd22baebac3e685d926b273ba47dfbbe7121af337e613c443c3</citedby><cites>FETCH-LOGICAL-a428t-f55698af4ca45ddd22baebac3e685d926b273ba47dfbbe7121af337e613c443c3</cites><orcidid>0000-0002-4243-9957 ; 0000-0002-5229-2717 ; 0000-0002-4557-5639 ; 0000-0003-0463-5962 ; 0000-0002-6024-0503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c07873$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c07873$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Chitac, Ruxandra G.</creatorcontrib><creatorcontrib>Zholobenko, Vladimir L.</creatorcontrib><creatorcontrib>Fletcher, Robin S.</creatorcontrib><creatorcontrib>Softley, Emma</creatorcontrib><creatorcontrib>Bradley, Jonathan</creatorcontrib><creatorcontrib>Mayoral, Alvaro</creatorcontrib><creatorcontrib>Turrina, Alessandro</creatorcontrib><creatorcontrib>Wright, Paul A.</creatorcontrib><title>Synthetic Control of the Defect Structure and Hierarchical Extra-Large-/Small-Pore Microporosity in Aluminosilicate Zeolite SWY</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The SWY-type aluminosilicate zeolite, STA-30, has been synthesized via different routes to understand its defect chemistry and solid acidity. The synthetic parameters varied were the gel aging, the Al source, and the organic structure directing agent. All syntheses give crystalline materials with similar Si/Al ratios (6–7) that are stable in the activated K,H-form and closely similar by powder X-ray diffraction. However, they exhibit major differences in the crystal morphology and in their intracrystalline porosity and silanol concentrations. The diDABCO-C82+ (1,1′-(octane-1,8-diyl)­bis­(1,4-diazabicyclo[2.2.2]­octan)-1-ium)-templated STA-30 samples (but not those templated by bisquinuclidinium octane, diQuin-C82+) possess hierarchical microporosity, consisting of noncrystallographic extra-large micropores (13 Å) that connect with the characteristic swy and gme cages of the SWY structure. This results in pore volumes up to 30% greater than those measured in activated diQuin-C8_STA-30 as well as higher concentrations of silanols and fewer Brønsted acid sites (BASs). The hierarchical porosity is demonstrated by isopentane adsorption and the FTIR of adsorbed pyridine, which shows that up to 77% of the BASs are accessible (remarkable for a zeolite that has a small-pore crystal structure). A structural model of single can/d6r column vacancies is proposed for the extra-large micropores, which is revealed unambiguously by high-resolution scanning transmission electron microscopy. STA-30 can therefore be prepared as a hierarchically porous zeolite via direct synthesis. The additional noncrystallographic porosity and, subsequently, the amount of SiOHs in the zeolites can be enhanced or strongly reduced by the choice of crystallization conditions.</description><subject>acidity</subject><subject>adsorption</subject><subject>aluminum silicates</subject><subject>crystal structure</subject><subject>crystallization</subject><subject>gels</subject><subject>micropores</subject><subject>octane</subject><subject>pentane</subject><subject>porosity</subject><subject>pyridines</subject><subject>transmission electron microscopy</subject><subject>X-ray diffraction</subject><subject>zeolites</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU-LFDEQxYMo7rh68wPk6MHezZ9Op-cky7i6wojCKKKXUJ2u3smQ7swmaXFOfnUz7KAIgqeiKi8_XtUj5DlnF5wJfrkDmy6kZbrV8gFZcCVYpbhoHpIFY0xUum3kGXmS0q60tWj5Y3ImtVZKinZBfm4OU95idpauwpRj8DQMtEzoaxzQZrrJcbZ5jkhh6umNwwjRbp0FT69_5AjVGuItVpebEbyvPoYifO9sDPsQQ3L5QN1Er_w8uqm0vvzLSL9h8K7UzZevT8mjAXzCZ6d6Tj6_uf60uqnWH96-W12tKyiWczUo1SxbGGoLter7XogOsAMrsWlVvxRNJ7TsoNb90HWoueAwSKmx4dLWtbTynLy65-7nbsTeYtkVvNlHN0I8mADO_P0yua25Dd8NZ0pz1vJCeHEixHA3Y8pmdMmi9zBhmJORXMlG1XrZ_lcq2mZZnAl1pL68l5aTpRRx-G2JM3PM1xzzNad8_5CPw12Y41SO9m_pL8CXp7Y</recordid><startdate>20231011</startdate><enddate>20231011</enddate><creator>Chitac, Ruxandra G.</creator><creator>Zholobenko, Vladimir L.</creator><creator>Fletcher, Robin S.</creator><creator>Softley, Emma</creator><creator>Bradley, Jonathan</creator><creator>Mayoral, Alvaro</creator><creator>Turrina, Alessandro</creator><creator>Wright, Paul A.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4243-9957</orcidid><orcidid>https://orcid.org/0000-0002-5229-2717</orcidid><orcidid>https://orcid.org/0000-0002-4557-5639</orcidid><orcidid>https://orcid.org/0000-0003-0463-5962</orcidid><orcidid>https://orcid.org/0000-0002-6024-0503</orcidid></search><sort><creationdate>20231011</creationdate><title>Synthetic Control of the Defect Structure and Hierarchical Extra-Large-/Small-Pore Microporosity in Aluminosilicate Zeolite SWY</title><author>Chitac, Ruxandra G. ; Zholobenko, Vladimir L. ; Fletcher, Robin S. ; Softley, Emma ; Bradley, Jonathan ; Mayoral, Alvaro ; Turrina, Alessandro ; Wright, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-f55698af4ca45ddd22baebac3e685d926b273ba47dfbbe7121af337e613c443c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>acidity</topic><topic>adsorption</topic><topic>aluminum silicates</topic><topic>crystal structure</topic><topic>crystallization</topic><topic>gels</topic><topic>micropores</topic><topic>octane</topic><topic>pentane</topic><topic>porosity</topic><topic>pyridines</topic><topic>transmission electron microscopy</topic><topic>X-ray diffraction</topic><topic>zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chitac, Ruxandra G.</creatorcontrib><creatorcontrib>Zholobenko, Vladimir L.</creatorcontrib><creatorcontrib>Fletcher, Robin S.</creatorcontrib><creatorcontrib>Softley, Emma</creatorcontrib><creatorcontrib>Bradley, Jonathan</creatorcontrib><creatorcontrib>Mayoral, Alvaro</creatorcontrib><creatorcontrib>Turrina, Alessandro</creatorcontrib><creatorcontrib>Wright, Paul A.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chitac, Ruxandra G.</au><au>Zholobenko, Vladimir L.</au><au>Fletcher, Robin S.</au><au>Softley, Emma</au><au>Bradley, Jonathan</au><au>Mayoral, Alvaro</au><au>Turrina, Alessandro</au><au>Wright, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Control of the Defect Structure and Hierarchical Extra-Large-/Small-Pore Microporosity in Aluminosilicate Zeolite SWY</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-10-11</date><risdate>2023</risdate><volume>145</volume><issue>40</issue><spage>22097</spage><epage>22114</epage><pages>22097-22114</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The SWY-type aluminosilicate zeolite, STA-30, has been synthesized via different routes to understand its defect chemistry and solid acidity. The synthetic parameters varied were the gel aging, the Al source, and the organic structure directing agent. All syntheses give crystalline materials with similar Si/Al ratios (6–7) that are stable in the activated K,H-form and closely similar by powder X-ray diffraction. However, they exhibit major differences in the crystal morphology and in their intracrystalline porosity and silanol concentrations. The diDABCO-C82+ (1,1′-(octane-1,8-diyl)­bis­(1,4-diazabicyclo[2.2.2]­octan)-1-ium)-templated STA-30 samples (but not those templated by bisquinuclidinium octane, diQuin-C82+) possess hierarchical microporosity, consisting of noncrystallographic extra-large micropores (13 Å) that connect with the characteristic swy and gme cages of the SWY structure. This results in pore volumes up to 30% greater than those measured in activated diQuin-C8_STA-30 as well as higher concentrations of silanols and fewer Brønsted acid sites (BASs). The hierarchical porosity is demonstrated by isopentane adsorption and the FTIR of adsorbed pyridine, which shows that up to 77% of the BASs are accessible (remarkable for a zeolite that has a small-pore crystal structure). A structural model of single can/d6r column vacancies is proposed for the extra-large micropores, which is revealed unambiguously by high-resolution scanning transmission electron microscopy. STA-30 can therefore be prepared as a hierarchically porous zeolite via direct synthesis. The additional noncrystallographic porosity and, subsequently, the amount of SiOHs in the zeolites can be enhanced or strongly reduced by the choice of crystallization conditions.</abstract><pub>American Chemical Society</pub><pmid>37755328</pmid><doi>10.1021/jacs.3c07873</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4243-9957</orcidid><orcidid>https://orcid.org/0000-0002-5229-2717</orcidid><orcidid>https://orcid.org/0000-0002-4557-5639</orcidid><orcidid>https://orcid.org/0000-0003-0463-5962</orcidid><orcidid>https://orcid.org/0000-0002-6024-0503</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-10, Vol.145 (40), p.22097-22114
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10571081
source American Chemical Society Journals
subjects acidity
adsorption
aluminum silicates
crystal structure
crystallization
gels
micropores
octane
pentane
porosity
pyridines
transmission electron microscopy
X-ray diffraction
zeolites
title Synthetic Control of the Defect Structure and Hierarchical Extra-Large-/Small-Pore Microporosity in Aluminosilicate Zeolite SWY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Control%20of%20the%20Defect%20Structure%20and%20Hierarchical%20Extra-Large-/Small-Pore%20Microporosity%20in%20Aluminosilicate%20Zeolite%20SWY&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Chitac,%20Ruxandra%20G.&rft.date=2023-10-11&rft.volume=145&rft.issue=40&rft.spage=22097&rft.epage=22114&rft.pages=22097-22114&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c07873&rft_dat=%3Cproquest_pubme%3E2869613251%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869613251&rft_id=info:pmid/37755328&rfr_iscdi=true