Elevated pentose phosphate pathway flux supports appendage regeneration

A fundamental step in regeneration is rapid growth to replace lost tissue. Cells must generate sufficient lipids, nucleotides, and proteins to fuel rapid cell division. To define metabolic pathways underlying regenerative growth, we undertake a multimodal investigation of metabolic reprogramming in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2022-10, Vol.41 (4), p.111552-111552, Article 111552
Hauptverfasser: Patel, Jeet H., Ong, Daniel J., Williams, Claire R., Callies, LuLu K., Wills, Andrea E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111552
container_issue 4
container_start_page 111552
container_title Cell reports (Cambridge)
container_volume 41
creator Patel, Jeet H.
Ong, Daniel J.
Williams, Claire R.
Callies, LuLu K.
Wills, Andrea E.
description A fundamental step in regeneration is rapid growth to replace lost tissue. Cells must generate sufficient lipids, nucleotides, and proteins to fuel rapid cell division. To define metabolic pathways underlying regenerative growth, we undertake a multimodal investigation of metabolic reprogramming in Xenopus tropicalis appendage regeneration. Regenerating tissues have increased glucose uptake; however, inhibition of glycolysis does not decrease regeneration. Instead, glucose is funneled to the pentose phosphate pathway (PPP), which is essential for full tail regeneration. Liquid chromatography-mass spectrometry (LC-MS) metabolite profiling reveals increased nucleotide and nicotinamide intermediates required for cell division. Using single-cell RNA sequencing (scRNA-seq), we find that highly proliferative cells have increased transcription of PPP enzymes and not glycolytic enzymes. Further, PPP inhibition results in decreased cell division specifically in regenerating tissue. Our results inform a model wherein regenerating tissues direct glucose toward the PPP, yielding nucleotide precursors to drive regenerative cell proliferation. [Display omitted] •Regenerating tail tissue in Xenopus tropicalis increases glucose uptake•Glucose is metabolized through the pentose phosphate pathway in tail regeneration•Regenerating tails have increased proliferative metabolite pools•Proliferation in regenerating tissues is enabled by PPP activity Regenerating tissues have a large demand for biosynthetic intermediates to drive growth. Patel et al. investigate how this need is met in Xenopus tropicalis tail regeneration by examining glucose metabolism through the pentose phosphate pathway, which is required to sustain proliferation in regenerating tissues.
doi_str_mv 10.1016/j.celrep.2022.111552
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10569227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124722014085</els_id><sourcerecordid>2729522068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-30d2e9ed50e64edac7f0f787330e02cdb963fcf3c37a26c21ac8194b633dcf23</originalsourceid><addsrcrecordid>eNp9UctOwzAQtBAIEPQPEMqRS4u9TpzkAkKoPCQkLtwt1960rtLY2Emhf49RAMEFX9banZ0dzRByxuiMUSYu1zONbUA_AwowY4wVBeyRYwDGpgzycv_X_4hMYlzT9ARlrM4PyREXUFUl48fkft7iVvVoMo9d7yJmfuWiX6VW5lW_elO7rGmH9ywO3rvQx0z5hDRqiVnAJXYYVG9dd0oOGtVGnHzVE_JyN3-5fZg-Pd8_3t48TXUu8n7KqQGs0RQURY5G6bKhTVmVnFOkoM2iFrzRDde8VCA0MKWrJHkhODe6AX5CrkdaPyw2aHTSHFQrfbAbFXbSKSv_Tjq7kku3lYwWogYoE8PFF0NwrwPGXm5sTGa2qkM3RAkl1AUAFVWC5iNUBxdjwObnDqPyMwa5lmMM8jMGOcaQ1s5_a_xZ-jY9Aa5GACajthaDjNpip9HYgLqXxtn_L3wAsYic8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729522068</pqid></control><display><type>article</type><title>Elevated pentose phosphate pathway flux supports appendage regeneration</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Patel, Jeet H. ; Ong, Daniel J. ; Williams, Claire R. ; Callies, LuLu K. ; Wills, Andrea E.</creator><creatorcontrib>Patel, Jeet H. ; Ong, Daniel J. ; Williams, Claire R. ; Callies, LuLu K. ; Wills, Andrea E.</creatorcontrib><description>A fundamental step in regeneration is rapid growth to replace lost tissue. Cells must generate sufficient lipids, nucleotides, and proteins to fuel rapid cell division. To define metabolic pathways underlying regenerative growth, we undertake a multimodal investigation of metabolic reprogramming in Xenopus tropicalis appendage regeneration. Regenerating tissues have increased glucose uptake; however, inhibition of glycolysis does not decrease regeneration. Instead, glucose is funneled to the pentose phosphate pathway (PPP), which is essential for full tail regeneration. Liquid chromatography-mass spectrometry (LC-MS) metabolite profiling reveals increased nucleotide and nicotinamide intermediates required for cell division. Using single-cell RNA sequencing (scRNA-seq), we find that highly proliferative cells have increased transcription of PPP enzymes and not glycolytic enzymes. Further, PPP inhibition results in decreased cell division specifically in regenerating tissue. Our results inform a model wherein regenerating tissues direct glucose toward the PPP, yielding nucleotide precursors to drive regenerative cell proliferation. [Display omitted] •Regenerating tail tissue in Xenopus tropicalis increases glucose uptake•Glucose is metabolized through the pentose phosphate pathway in tail regeneration•Regenerating tails have increased proliferative metabolite pools•Proliferation in regenerating tissues is enabled by PPP activity Regenerating tissues have a large demand for biosynthetic intermediates to drive growth. Patel et al. investigate how this need is met in Xenopus tropicalis tail regeneration by examining glucose metabolism through the pentose phosphate pathway, which is required to sustain proliferation in regenerating tissues.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2022.111552</identifier><identifier>PMID: 36288713</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Glucose - metabolism ; glycolysis ; Glycolysis - physiology ; Lipids ; Niacinamide ; Nucleotides - metabolism ; pentose phosphate pathway ; Pentose Phosphate Pathway - genetics ; proliferation ; regeneration ; Xenopus tropicalis</subject><ispartof>Cell reports (Cambridge), 2022-10, Vol.41 (4), p.111552-111552, Article 111552</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-30d2e9ed50e64edac7f0f787330e02cdb963fcf3c37a26c21ac8194b633dcf23</citedby><cites>FETCH-LOGICAL-c464t-30d2e9ed50e64edac7f0f787330e02cdb963fcf3c37a26c21ac8194b633dcf23</cites><orcidid>0000-0003-3647-8105 ; 0000-0002-0214-4484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36288713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Jeet H.</creatorcontrib><creatorcontrib>Ong, Daniel J.</creatorcontrib><creatorcontrib>Williams, Claire R.</creatorcontrib><creatorcontrib>Callies, LuLu K.</creatorcontrib><creatorcontrib>Wills, Andrea E.</creatorcontrib><title>Elevated pentose phosphate pathway flux supports appendage regeneration</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>A fundamental step in regeneration is rapid growth to replace lost tissue. Cells must generate sufficient lipids, nucleotides, and proteins to fuel rapid cell division. To define metabolic pathways underlying regenerative growth, we undertake a multimodal investigation of metabolic reprogramming in Xenopus tropicalis appendage regeneration. Regenerating tissues have increased glucose uptake; however, inhibition of glycolysis does not decrease regeneration. Instead, glucose is funneled to the pentose phosphate pathway (PPP), which is essential for full tail regeneration. Liquid chromatography-mass spectrometry (LC-MS) metabolite profiling reveals increased nucleotide and nicotinamide intermediates required for cell division. Using single-cell RNA sequencing (scRNA-seq), we find that highly proliferative cells have increased transcription of PPP enzymes and not glycolytic enzymes. Further, PPP inhibition results in decreased cell division specifically in regenerating tissue. Our results inform a model wherein regenerating tissues direct glucose toward the PPP, yielding nucleotide precursors to drive regenerative cell proliferation. [Display omitted] •Regenerating tail tissue in Xenopus tropicalis increases glucose uptake•Glucose is metabolized through the pentose phosphate pathway in tail regeneration•Regenerating tails have increased proliferative metabolite pools•Proliferation in regenerating tissues is enabled by PPP activity Regenerating tissues have a large demand for biosynthetic intermediates to drive growth. Patel et al. investigate how this need is met in Xenopus tropicalis tail regeneration by examining glucose metabolism through the pentose phosphate pathway, which is required to sustain proliferation in regenerating tissues.</description><subject>Glucose - metabolism</subject><subject>glycolysis</subject><subject>Glycolysis - physiology</subject><subject>Lipids</subject><subject>Niacinamide</subject><subject>Nucleotides - metabolism</subject><subject>pentose phosphate pathway</subject><subject>Pentose Phosphate Pathway - genetics</subject><subject>proliferation</subject><subject>regeneration</subject><subject>Xenopus tropicalis</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctOwzAQtBAIEPQPEMqRS4u9TpzkAkKoPCQkLtwt1960rtLY2Emhf49RAMEFX9banZ0dzRByxuiMUSYu1zONbUA_AwowY4wVBeyRYwDGpgzycv_X_4hMYlzT9ARlrM4PyREXUFUl48fkft7iVvVoMo9d7yJmfuWiX6VW5lW_elO7rGmH9ywO3rvQx0z5hDRqiVnAJXYYVG9dd0oOGtVGnHzVE_JyN3-5fZg-Pd8_3t48TXUu8n7KqQGs0RQURY5G6bKhTVmVnFOkoM2iFrzRDde8VCA0MKWrJHkhODe6AX5CrkdaPyw2aHTSHFQrfbAbFXbSKSv_Tjq7kku3lYwWogYoE8PFF0NwrwPGXm5sTGa2qkM3RAkl1AUAFVWC5iNUBxdjwObnDqPyMwa5lmMM8jMGOcaQ1s5_a_xZ-jY9Aa5GACajthaDjNpip9HYgLqXxtn_L3wAsYic8Q</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Patel, Jeet H.</creator><creator>Ong, Daniel J.</creator><creator>Williams, Claire R.</creator><creator>Callies, LuLu K.</creator><creator>Wills, Andrea E.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3647-8105</orcidid><orcidid>https://orcid.org/0000-0002-0214-4484</orcidid></search><sort><creationdate>20221025</creationdate><title>Elevated pentose phosphate pathway flux supports appendage regeneration</title><author>Patel, Jeet H. ; Ong, Daniel J. ; Williams, Claire R. ; Callies, LuLu K. ; Wills, Andrea E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-30d2e9ed50e64edac7f0f787330e02cdb963fcf3c37a26c21ac8194b633dcf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Glucose - metabolism</topic><topic>glycolysis</topic><topic>Glycolysis - physiology</topic><topic>Lipids</topic><topic>Niacinamide</topic><topic>Nucleotides - metabolism</topic><topic>pentose phosphate pathway</topic><topic>Pentose Phosphate Pathway - genetics</topic><topic>proliferation</topic><topic>regeneration</topic><topic>Xenopus tropicalis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Jeet H.</creatorcontrib><creatorcontrib>Ong, Daniel J.</creatorcontrib><creatorcontrib>Williams, Claire R.</creatorcontrib><creatorcontrib>Callies, LuLu K.</creatorcontrib><creatorcontrib>Wills, Andrea E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Jeet H.</au><au>Ong, Daniel J.</au><au>Williams, Claire R.</au><au>Callies, LuLu K.</au><au>Wills, Andrea E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elevated pentose phosphate pathway flux supports appendage regeneration</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2022-10-25</date><risdate>2022</risdate><volume>41</volume><issue>4</issue><spage>111552</spage><epage>111552</epage><pages>111552-111552</pages><artnum>111552</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>A fundamental step in regeneration is rapid growth to replace lost tissue. Cells must generate sufficient lipids, nucleotides, and proteins to fuel rapid cell division. To define metabolic pathways underlying regenerative growth, we undertake a multimodal investigation of metabolic reprogramming in Xenopus tropicalis appendage regeneration. Regenerating tissues have increased glucose uptake; however, inhibition of glycolysis does not decrease regeneration. Instead, glucose is funneled to the pentose phosphate pathway (PPP), which is essential for full tail regeneration. Liquid chromatography-mass spectrometry (LC-MS) metabolite profiling reveals increased nucleotide and nicotinamide intermediates required for cell division. Using single-cell RNA sequencing (scRNA-seq), we find that highly proliferative cells have increased transcription of PPP enzymes and not glycolytic enzymes. Further, PPP inhibition results in decreased cell division specifically in regenerating tissue. Our results inform a model wherein regenerating tissues direct glucose toward the PPP, yielding nucleotide precursors to drive regenerative cell proliferation. [Display omitted] •Regenerating tail tissue in Xenopus tropicalis increases glucose uptake•Glucose is metabolized through the pentose phosphate pathway in tail regeneration•Regenerating tails have increased proliferative metabolite pools•Proliferation in regenerating tissues is enabled by PPP activity Regenerating tissues have a large demand for biosynthetic intermediates to drive growth. Patel et al. investigate how this need is met in Xenopus tropicalis tail regeneration by examining glucose metabolism through the pentose phosphate pathway, which is required to sustain proliferation in regenerating tissues.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36288713</pmid><doi>10.1016/j.celrep.2022.111552</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3647-8105</orcidid><orcidid>https://orcid.org/0000-0002-0214-4484</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2022-10, Vol.41 (4), p.111552-111552, Article 111552
issn 2211-1247
2211-1247
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10569227
source MEDLINE; DOAJ Directory of Open Access Journals; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Glucose - metabolism
glycolysis
Glycolysis - physiology
Lipids
Niacinamide
Nucleotides - metabolism
pentose phosphate pathway
Pentose Phosphate Pathway - genetics
proliferation
regeneration
Xenopus tropicalis
title Elevated pentose phosphate pathway flux supports appendage regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elevated%20pentose%20phosphate%20pathway%20flux%20supports%20appendage%20regeneration&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Patel,%20Jeet%20H.&rft.date=2022-10-25&rft.volume=41&rft.issue=4&rft.spage=111552&rft.epage=111552&rft.pages=111552-111552&rft.artnum=111552&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2022.111552&rft_dat=%3Cproquest_pubme%3E2729522068%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729522068&rft_id=info:pmid/36288713&rft_els_id=S2211124722014085&rfr_iscdi=true