Normobaric hypoxia shows enhanced FOXO1 signaling in obese mouse gastrocnemius muscle linked to metabolism and muscle structure and neuromuscular innervation
Skeletal muscle relies on mitochondria for sustainable ATP production, which may be impacted by reduced oxygen availability (hypoxia). Compared with long-term hypoxia, the mechanistic in vivo response to acute hypoxia remains elusive. Therefore, we aimed to provide an integrated description of the M...
Gespeichert in:
Veröffentlicht in: | Pflügers Archiv 2023-11, Vol.475 (11), p.1265-1281 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1281 |
---|---|
container_issue | 11 |
container_start_page | 1265 |
container_title | Pflügers Archiv |
container_volume | 475 |
creator | Song, Jingyi Duivenvoorde, Loes P. M. Grefte, Sander Kuda, Ondrej Martínez-Ramírez, Felipe van der Stelt, Inge Mastorakou, Dimitra van Schothorst, Evert M. Keijer, Jaap |
description | Skeletal muscle relies on mitochondria for sustainable ATP production, which may be impacted by reduced oxygen availability (hypoxia). Compared with long-term hypoxia, the mechanistic
in vivo
response to acute hypoxia remains elusive. Therefore, we aimed to provide an integrated description of the
Musculus gastrocnemius
response to acute hypoxia. Fasted male C57BL/6JOlaHsd mice, fed a 40en% fat diet for six weeks, were exposed to 12% O
2
normobaric hypoxia or normoxia (20.9% O
2
) for six hours (
n
= 12 per group). Whole-body energy metabolism and the transcriptome response of the
M. gastrocnemius
were analyzed and confirmed by acylcarnitine determination and Q-PCR. At the whole-body level, six hours of hypoxia reduced energy expenditure, increased blood glucose and tended to decreased the respiratory exchange ratio (RER). Whole-genome transcriptome analysis revealed upregulation of forkhead box-O (FOXO) signalling, including an increased expression of tribbles pseudokinase 3 (
Trib3
).
Trib3
positively correlated with blood glucose levels. Upregulated carnitine palmitoyltransferase 1A negatively correlated with the RER, but the significantly increased in tissue C14-1, C16-0 and C18-1 acylcarnitines supported that β-oxidation was not regulated. The hypoxia-induced FOXO activation could also be connected to altered gene expression related to fiber-type switching, extracellular matrix remodeling, muscle differentiation and neuromuscular junction denervation. Our results suggest that a six-hour exposure of obese mice to 12% O
2
normobaric hypoxia impacts
M. gastrocnemius
via FOXO1, initiating alterations that may contribute to muscle remodeling of which denervation is novel and warrants further investigation. The findings support an early role of hypoxia in tissue alterations in hypoxia-associated conditions such as aging and obesity. |
doi_str_mv | 10.1007/s00424-023-02854-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10567817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860402481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-33d632a7676ed21ec66ba50f5cbe8fc6082e85fd9d50f87cf1de49066fafc1a83</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS1ERYfCC7CyxIZNiv_ieFYIVbRFqphNkdhZjnOTcYntwY5L-zC8K55OAcGChW3p3u8c-d6D0CtKTikh3dtMiGCiIYzXo1rRiCdoRQVnDSOUP0UrQjhtZCfVMXqe8w0hhAnFnqFj3slWMrZeoR-fYvKxN8lZvL3fxTtncN7G7xlD2JpgYcDnmy8birObgpldmLALOPaQAftY6j2ZvKRoA3hXMvYl2xlwBb9W6RKxh8X0cXbZYxOGX_0qKXYpCR6KAUqK-06ZTar-AdKtWVwML9DRaOYMLx_fE_T5_MP12WVztbn4ePb-qrGiZUvD-SA5M10dFQZGwUrZm5aMre1BjVYSxUC147AealF1dqQDiDWRcjSjpUbxE_Tu4LsrvYfBQliSmfUuOW_SvY7G6b87wW31FG81Ja3sFO2qw5tHhxS_FciL9i5bmGcToK5JMyWJ2K-fVvT1P-hNLKkud091reSyzlEpdqBsijknGH__hhK9j18f4tc1fv0QvxZVxA-iXOEwQfpj_R_VTzRjtqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875636676</pqid></control><display><type>article</type><title>Normobaric hypoxia shows enhanced FOXO1 signaling in obese mouse gastrocnemius muscle linked to metabolism and muscle structure and neuromuscular innervation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Song, Jingyi ; Duivenvoorde, Loes P. M. ; Grefte, Sander ; Kuda, Ondrej ; Martínez-Ramírez, Felipe ; van der Stelt, Inge ; Mastorakou, Dimitra ; van Schothorst, Evert M. ; Keijer, Jaap</creator><creatorcontrib>Song, Jingyi ; Duivenvoorde, Loes P. M. ; Grefte, Sander ; Kuda, Ondrej ; Martínez-Ramírez, Felipe ; van der Stelt, Inge ; Mastorakou, Dimitra ; van Schothorst, Evert M. ; Keijer, Jaap</creatorcontrib><description>Skeletal muscle relies on mitochondria for sustainable ATP production, which may be impacted by reduced oxygen availability (hypoxia). Compared with long-term hypoxia, the mechanistic
in vivo
response to acute hypoxia remains elusive. Therefore, we aimed to provide an integrated description of the
Musculus gastrocnemius
response to acute hypoxia. Fasted male C57BL/6JOlaHsd mice, fed a 40en% fat diet for six weeks, were exposed to 12% O
2
normobaric hypoxia or normoxia (20.9% O
2
) for six hours (
n
= 12 per group). Whole-body energy metabolism and the transcriptome response of the
M. gastrocnemius
were analyzed and confirmed by acylcarnitine determination and Q-PCR. At the whole-body level, six hours of hypoxia reduced energy expenditure, increased blood glucose and tended to decreased the respiratory exchange ratio (RER). Whole-genome transcriptome analysis revealed upregulation of forkhead box-O (FOXO) signalling, including an increased expression of tribbles pseudokinase 3 (
Trib3
).
Trib3
positively correlated with blood glucose levels. Upregulated carnitine palmitoyltransferase 1A negatively correlated with the RER, but the significantly increased in tissue C14-1, C16-0 and C18-1 acylcarnitines supported that β-oxidation was not regulated. The hypoxia-induced FOXO activation could also be connected to altered gene expression related to fiber-type switching, extracellular matrix remodeling, muscle differentiation and neuromuscular junction denervation. Our results suggest that a six-hour exposure of obese mice to 12% O
2
normobaric hypoxia impacts
M. gastrocnemius
via FOXO1, initiating alterations that may contribute to muscle remodeling of which denervation is novel and warrants further investigation. The findings support an early role of hypoxia in tissue alterations in hypoxia-associated conditions such as aging and obesity.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-023-02854-4</identifier><identifier>PMID: 37656229</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Blood glucose ; Carnitine palmitoyltransferase ; Cell Biology ; Denervation ; Energy expenditure ; Energy metabolism ; Extracellular matrix ; Forkhead protein ; FOXO1 protein ; Gastrocnemius muscle ; Gene expression ; Genomes ; Human Physiology ; Hypoxia ; Innervation ; Metabolism ; Molecular Medicine ; Muscle Physiology ; Neurosciences ; Obesity ; Palmitoyltransferase ; Receptors ; Skeletal muscle ; Transcriptomes</subject><ispartof>Pflügers Archiv, 2023-11, Vol.475 (11), p.1265-1281</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-33d632a7676ed21ec66ba50f5cbe8fc6082e85fd9d50f87cf1de49066fafc1a83</citedby><cites>FETCH-LOGICAL-c452t-33d632a7676ed21ec66ba50f5cbe8fc6082e85fd9d50f87cf1de49066fafc1a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00424-023-02854-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00424-023-02854-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Song, Jingyi</creatorcontrib><creatorcontrib>Duivenvoorde, Loes P. M.</creatorcontrib><creatorcontrib>Grefte, Sander</creatorcontrib><creatorcontrib>Kuda, Ondrej</creatorcontrib><creatorcontrib>Martínez-Ramírez, Felipe</creatorcontrib><creatorcontrib>van der Stelt, Inge</creatorcontrib><creatorcontrib>Mastorakou, Dimitra</creatorcontrib><creatorcontrib>van Schothorst, Evert M.</creatorcontrib><creatorcontrib>Keijer, Jaap</creatorcontrib><title>Normobaric hypoxia shows enhanced FOXO1 signaling in obese mouse gastrocnemius muscle linked to metabolism and muscle structure and neuromuscular innervation</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><description>Skeletal muscle relies on mitochondria for sustainable ATP production, which may be impacted by reduced oxygen availability (hypoxia). Compared with long-term hypoxia, the mechanistic
in vivo
response to acute hypoxia remains elusive. Therefore, we aimed to provide an integrated description of the
Musculus gastrocnemius
response to acute hypoxia. Fasted male C57BL/6JOlaHsd mice, fed a 40en% fat diet for six weeks, were exposed to 12% O
2
normobaric hypoxia or normoxia (20.9% O
2
) for six hours (
n
= 12 per group). Whole-body energy metabolism and the transcriptome response of the
M. gastrocnemius
were analyzed and confirmed by acylcarnitine determination and Q-PCR. At the whole-body level, six hours of hypoxia reduced energy expenditure, increased blood glucose and tended to decreased the respiratory exchange ratio (RER). Whole-genome transcriptome analysis revealed upregulation of forkhead box-O (FOXO) signalling, including an increased expression of tribbles pseudokinase 3 (
Trib3
).
Trib3
positively correlated with blood glucose levels. Upregulated carnitine palmitoyltransferase 1A negatively correlated with the RER, but the significantly increased in tissue C14-1, C16-0 and C18-1 acylcarnitines supported that β-oxidation was not regulated. The hypoxia-induced FOXO activation could also be connected to altered gene expression related to fiber-type switching, extracellular matrix remodeling, muscle differentiation and neuromuscular junction denervation. Our results suggest that a six-hour exposure of obese mice to 12% O
2
normobaric hypoxia impacts
M. gastrocnemius
via FOXO1, initiating alterations that may contribute to muscle remodeling of which denervation is novel and warrants further investigation. The findings support an early role of hypoxia in tissue alterations in hypoxia-associated conditions such as aging and obesity.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood glucose</subject><subject>Carnitine palmitoyltransferase</subject><subject>Cell Biology</subject><subject>Denervation</subject><subject>Energy expenditure</subject><subject>Energy metabolism</subject><subject>Extracellular matrix</subject><subject>Forkhead protein</subject><subject>FOXO1 protein</subject><subject>Gastrocnemius muscle</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Human Physiology</subject><subject>Hypoxia</subject><subject>Innervation</subject><subject>Metabolism</subject><subject>Molecular Medicine</subject><subject>Muscle Physiology</subject><subject>Neurosciences</subject><subject>Obesity</subject><subject>Palmitoyltransferase</subject><subject>Receptors</subject><subject>Skeletal muscle</subject><subject>Transcriptomes</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhS1ERYfCC7CyxIZNiv_ieFYIVbRFqphNkdhZjnOTcYntwY5L-zC8K55OAcGChW3p3u8c-d6D0CtKTikh3dtMiGCiIYzXo1rRiCdoRQVnDSOUP0UrQjhtZCfVMXqe8w0hhAnFnqFj3slWMrZeoR-fYvKxN8lZvL3fxTtncN7G7xlD2JpgYcDnmy8birObgpldmLALOPaQAftY6j2ZvKRoA3hXMvYl2xlwBb9W6RKxh8X0cXbZYxOGX_0qKXYpCR6KAUqK-06ZTar-AdKtWVwML9DRaOYMLx_fE_T5_MP12WVztbn4ePb-qrGiZUvD-SA5M10dFQZGwUrZm5aMre1BjVYSxUC147AealF1dqQDiDWRcjSjpUbxE_Tu4LsrvYfBQliSmfUuOW_SvY7G6b87wW31FG81Ja3sFO2qw5tHhxS_FciL9i5bmGcToK5JMyWJ2K-fVvT1P-hNLKkud091reSyzlEpdqBsijknGH__hhK9j18f4tc1fv0QvxZVxA-iXOEwQfpj_R_VTzRjtqg</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Song, Jingyi</creator><creator>Duivenvoorde, Loes P. M.</creator><creator>Grefte, Sander</creator><creator>Kuda, Ondrej</creator><creator>Martínez-Ramírez, Felipe</creator><creator>van der Stelt, Inge</creator><creator>Mastorakou, Dimitra</creator><creator>van Schothorst, Evert M.</creator><creator>Keijer, Jaap</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231101</creationdate><title>Normobaric hypoxia shows enhanced FOXO1 signaling in obese mouse gastrocnemius muscle linked to metabolism and muscle structure and neuromuscular innervation</title><author>Song, Jingyi ; Duivenvoorde, Loes P. M. ; Grefte, Sander ; Kuda, Ondrej ; Martínez-Ramírez, Felipe ; van der Stelt, Inge ; Mastorakou, Dimitra ; van Schothorst, Evert M. ; Keijer, Jaap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-33d632a7676ed21ec66ba50f5cbe8fc6082e85fd9d50f87cf1de49066fafc1a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood glucose</topic><topic>Carnitine palmitoyltransferase</topic><topic>Cell Biology</topic><topic>Denervation</topic><topic>Energy expenditure</topic><topic>Energy metabolism</topic><topic>Extracellular matrix</topic><topic>Forkhead protein</topic><topic>FOXO1 protein</topic><topic>Gastrocnemius muscle</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Human Physiology</topic><topic>Hypoxia</topic><topic>Innervation</topic><topic>Metabolism</topic><topic>Molecular Medicine</topic><topic>Muscle Physiology</topic><topic>Neurosciences</topic><topic>Obesity</topic><topic>Palmitoyltransferase</topic><topic>Receptors</topic><topic>Skeletal muscle</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Jingyi</creatorcontrib><creatorcontrib>Duivenvoorde, Loes P. M.</creatorcontrib><creatorcontrib>Grefte, Sander</creatorcontrib><creatorcontrib>Kuda, Ondrej</creatorcontrib><creatorcontrib>Martínez-Ramírez, Felipe</creatorcontrib><creatorcontrib>van der Stelt, Inge</creatorcontrib><creatorcontrib>Mastorakou, Dimitra</creatorcontrib><creatorcontrib>van Schothorst, Evert M.</creatorcontrib><creatorcontrib>Keijer, Jaap</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Jingyi</au><au>Duivenvoorde, Loes P. M.</au><au>Grefte, Sander</au><au>Kuda, Ondrej</au><au>Martínez-Ramírez, Felipe</au><au>van der Stelt, Inge</au><au>Mastorakou, Dimitra</au><au>van Schothorst, Evert M.</au><au>Keijer, Jaap</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normobaric hypoxia shows enhanced FOXO1 signaling in obese mouse gastrocnemius muscle linked to metabolism and muscle structure and neuromuscular innervation</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>475</volume><issue>11</issue><spage>1265</spage><epage>1281</epage><pages>1265-1281</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>Skeletal muscle relies on mitochondria for sustainable ATP production, which may be impacted by reduced oxygen availability (hypoxia). Compared with long-term hypoxia, the mechanistic
in vivo
response to acute hypoxia remains elusive. Therefore, we aimed to provide an integrated description of the
Musculus gastrocnemius
response to acute hypoxia. Fasted male C57BL/6JOlaHsd mice, fed a 40en% fat diet for six weeks, were exposed to 12% O
2
normobaric hypoxia or normoxia (20.9% O
2
) for six hours (
n
= 12 per group). Whole-body energy metabolism and the transcriptome response of the
M. gastrocnemius
were analyzed and confirmed by acylcarnitine determination and Q-PCR. At the whole-body level, six hours of hypoxia reduced energy expenditure, increased blood glucose and tended to decreased the respiratory exchange ratio (RER). Whole-genome transcriptome analysis revealed upregulation of forkhead box-O (FOXO) signalling, including an increased expression of tribbles pseudokinase 3 (
Trib3
).
Trib3
positively correlated with blood glucose levels. Upregulated carnitine palmitoyltransferase 1A negatively correlated with the RER, but the significantly increased in tissue C14-1, C16-0 and C18-1 acylcarnitines supported that β-oxidation was not regulated. The hypoxia-induced FOXO activation could also be connected to altered gene expression related to fiber-type switching, extracellular matrix remodeling, muscle differentiation and neuromuscular junction denervation. Our results suggest that a six-hour exposure of obese mice to 12% O
2
normobaric hypoxia impacts
M. gastrocnemius
via FOXO1, initiating alterations that may contribute to muscle remodeling of which denervation is novel and warrants further investigation. The findings support an early role of hypoxia in tissue alterations in hypoxia-associated conditions such as aging and obesity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37656229</pmid><doi>10.1007/s00424-023-02854-4</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-6768 |
ispartof | Pflügers Archiv, 2023-11, Vol.475 (11), p.1265-1281 |
issn | 0031-6768 1432-2013 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10567817 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biomedical and Life Sciences Biomedicine Blood glucose Carnitine palmitoyltransferase Cell Biology Denervation Energy expenditure Energy metabolism Extracellular matrix Forkhead protein FOXO1 protein Gastrocnemius muscle Gene expression Genomes Human Physiology Hypoxia Innervation Metabolism Molecular Medicine Muscle Physiology Neurosciences Obesity Palmitoyltransferase Receptors Skeletal muscle Transcriptomes |
title | Normobaric hypoxia shows enhanced FOXO1 signaling in obese mouse gastrocnemius muscle linked to metabolism and muscle structure and neuromuscular innervation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normobaric%20hypoxia%20shows%20enhanced%20FOXO1%20signaling%20in%20obese%20mouse%20gastrocnemius%20muscle%20linked%20to%20metabolism%20and%20muscle%20structure%20and%20neuromuscular%20innervation&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Song,%20Jingyi&rft.date=2023-11-01&rft.volume=475&rft.issue=11&rft.spage=1265&rft.epage=1281&rft.pages=1265-1281&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-023-02854-4&rft_dat=%3Cproquest_pubme%3E2860402481%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875636676&rft_id=info:pmid/37656229&rfr_iscdi=true |