ChatGPT Conquers the Saudi Medical Licensing Exam: Exploring the Accuracy of Artificial Intelligence in Medical Knowledge Assessment and Implications for Modern Medical Education

BackgroundThe application of artificial intelligence (AI) in education is undergoing rapid advancements, with models such as ChatGPT-4 showing potential in medical education. This study aims to evaluate the proficiency of ChatGPT-4 in answering Saudi Medical Licensing Exam (SMLE) questions.Methodolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Curēus (Palo Alto, CA) CA), 2023-09, Vol.15 (9), p.e45043-e45043
Hauptverfasser: Aljindan, Fahad K, Al Qurashi, Abdullah A, Albalawi, Ibrahim Abdullah S, Alanazi, Abeer Mohammed M, Aljuhani, Hussam Abdulkhaliq M, Falah Almutairi, Faisal, Aldamigh, Omar A, Halawani, Ibrahim R, K. Zino Alarki, Subhi M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e45043
container_issue 9
container_start_page e45043
container_title Curēus (Palo Alto, CA)
container_volume 15
creator Aljindan, Fahad K
Al Qurashi, Abdullah A
Albalawi, Ibrahim Abdullah S
Alanazi, Abeer Mohammed M
Aljuhani, Hussam Abdulkhaliq M
Falah Almutairi, Faisal
Aldamigh, Omar A
Halawani, Ibrahim R
K. Zino Alarki, Subhi M
description BackgroundThe application of artificial intelligence (AI) in education is undergoing rapid advancements, with models such as ChatGPT-4 showing potential in medical education. This study aims to evaluate the proficiency of ChatGPT-4 in answering Saudi Medical Licensing Exam (SMLE) questions.MethodologyA dataset of 220 questions across four medical disciplines was used. The model was trained using a specific code to answer the questions accurately, and its performance was assessed using key performance indicators, difficulty level, and exam sections.ResultsChatGPT-4 demonstrated an overall accuracy of 88.6%. It showed high proficiency with Easy and Average questions, but accuracy decreased for Hard questions. Performance was consistent across all disciplines, indicating a broad knowledge base. However, an error analysis revealed areas for further refinement, particularly with category (Option) A questions across all sections.ConclusionsThis study underscores the potential of ChatGPT-4 as an AI-assisted tool in medical education, demonstrating high proficiency in answering SMLE questions. Future research is recommended to expand the scope of training and evaluation as well as to enhance the model’s performance on complex clinical questions.
doi_str_mv 10.7759/cureus.45043
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10566535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877388417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-39675e32301842c5dea28a383cdc22bf6830328cee2c7fca05cf0077aed347c13</originalsourceid><addsrcrecordid>eNpdks1OGzEUhUdVKxVRdn0AS910QcBjj8dONyiKUogIAql0bZnrO4nRjJ3anra8Fk-I0yBou_GP7nePfY9OVX2s6YmUYnoKY8QxnTSCNvxNdcDqVk1UrZq3f53fV0cp3VNKayoZlfSgepxvTD6_uSXz4H-MGBPJGyTfzGgduULrwPRk5QB9cn5NFr_N8KWs2z7E3X3HzqC8bOCBhI7MYnadA1ealj5j37s1ekDi_IvYpQ-_erTr0pgSpjSgz8R4S5bDti9EdsEn0oVIroLF-Nq4sOO--qF615k-4dHzflh9_7q4nV9MVtfny_lsNQHOaJ7waSsFcsZpGZyBsGiYMlxxsMDYXdcqTjlTgMhAdmCogI5SKQ1a3kio-WF1ttfdjncD2uJBjqbX2-gGEx90ME7_W_Fuo9fhp66paFvBRVH4_KwQQzE3ZT24BMUW4zGMSTMlJVeqqWVBP_2H3ocx-jJfoVQjGJsKWqjjPQUxpBSxe_lNTfUuBXqfAv0nBfwJ4Hqp3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884522950</pqid></control><display><type>article</type><title>ChatGPT Conquers the Saudi Medical Licensing Exam: Exploring the Accuracy of Artificial Intelligence in Medical Knowledge Assessment and Implications for Modern Medical Education</title><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Aljindan, Fahad K ; Al Qurashi, Abdullah A ; Albalawi, Ibrahim Abdullah S ; Alanazi, Abeer Mohammed M ; Aljuhani, Hussam Abdulkhaliq M ; Falah Almutairi, Faisal ; Aldamigh, Omar A ; Halawani, Ibrahim R ; K. Zino Alarki, Subhi M</creator><creatorcontrib>Aljindan, Fahad K ; Al Qurashi, Abdullah A ; Albalawi, Ibrahim Abdullah S ; Alanazi, Abeer Mohammed M ; Aljuhani, Hussam Abdulkhaliq M ; Falah Almutairi, Faisal ; Aldamigh, Omar A ; Halawani, Ibrahim R ; K. Zino Alarki, Subhi M</creatorcontrib><description>BackgroundThe application of artificial intelligence (AI) in education is undergoing rapid advancements, with models such as ChatGPT-4 showing potential in medical education. This study aims to evaluate the proficiency of ChatGPT-4 in answering Saudi Medical Licensing Exam (SMLE) questions.MethodologyA dataset of 220 questions across four medical disciplines was used. The model was trained using a specific code to answer the questions accurately, and its performance was assessed using key performance indicators, difficulty level, and exam sections.ResultsChatGPT-4 demonstrated an overall accuracy of 88.6%. It showed high proficiency with Easy and Average questions, but accuracy decreased for Hard questions. Performance was consistent across all disciplines, indicating a broad knowledge base. However, an error analysis revealed areas for further refinement, particularly with category (Option) A questions across all sections.ConclusionsThis study underscores the potential of ChatGPT-4 as an AI-assisted tool in medical education, demonstrating high proficiency in answering SMLE questions. Future research is recommended to expand the scope of training and evaluation as well as to enhance the model’s performance on complex clinical questions.</description><identifier>ISSN: 2168-8184</identifier><identifier>EISSN: 2168-8184</identifier><identifier>DOI: 10.7759/cureus.45043</identifier><language>eng</language><publisher>Palo Alto: Cureus Inc</publisher><subject>Accuracy ; Artificial intelligence ; Business metrics ; Chatbots ; Data collection ; Datasets ; Gynecology ; Healthcare Technology ; Licenses ; Medical Education ; Medicine ; Obstetrics ; Pediatrics ; Performance evaluation ; Quality Improvement ; Surgery</subject><ispartof>Curēus (Palo Alto, CA), 2023-09, Vol.15 (9), p.e45043-e45043</ispartof><rights>Copyright © 2023, Aljindan et al. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2023, Aljindan et al. 2023 Aljindan et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-39675e32301842c5dea28a383cdc22bf6830328cee2c7fca05cf0077aed347c13</citedby><cites>FETCH-LOGICAL-c320t-39675e32301842c5dea28a383cdc22bf6830328cee2c7fca05cf0077aed347c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566535/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566535/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids></links><search><creatorcontrib>Aljindan, Fahad K</creatorcontrib><creatorcontrib>Al Qurashi, Abdullah A</creatorcontrib><creatorcontrib>Albalawi, Ibrahim Abdullah S</creatorcontrib><creatorcontrib>Alanazi, Abeer Mohammed M</creatorcontrib><creatorcontrib>Aljuhani, Hussam Abdulkhaliq M</creatorcontrib><creatorcontrib>Falah Almutairi, Faisal</creatorcontrib><creatorcontrib>Aldamigh, Omar A</creatorcontrib><creatorcontrib>Halawani, Ibrahim R</creatorcontrib><creatorcontrib>K. Zino Alarki, Subhi M</creatorcontrib><title>ChatGPT Conquers the Saudi Medical Licensing Exam: Exploring the Accuracy of Artificial Intelligence in Medical Knowledge Assessment and Implications for Modern Medical Education</title><title>Curēus (Palo Alto, CA)</title><description>BackgroundThe application of artificial intelligence (AI) in education is undergoing rapid advancements, with models such as ChatGPT-4 showing potential in medical education. This study aims to evaluate the proficiency of ChatGPT-4 in answering Saudi Medical Licensing Exam (SMLE) questions.MethodologyA dataset of 220 questions across four medical disciplines was used. The model was trained using a specific code to answer the questions accurately, and its performance was assessed using key performance indicators, difficulty level, and exam sections.ResultsChatGPT-4 demonstrated an overall accuracy of 88.6%. It showed high proficiency with Easy and Average questions, but accuracy decreased for Hard questions. Performance was consistent across all disciplines, indicating a broad knowledge base. However, an error analysis revealed areas for further refinement, particularly with category (Option) A questions across all sections.ConclusionsThis study underscores the potential of ChatGPT-4 as an AI-assisted tool in medical education, demonstrating high proficiency in answering SMLE questions. Future research is recommended to expand the scope of training and evaluation as well as to enhance the model’s performance on complex clinical questions.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Business metrics</subject><subject>Chatbots</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Gynecology</subject><subject>Healthcare Technology</subject><subject>Licenses</subject><subject>Medical Education</subject><subject>Medicine</subject><subject>Obstetrics</subject><subject>Pediatrics</subject><subject>Performance evaluation</subject><subject>Quality Improvement</subject><subject>Surgery</subject><issn>2168-8184</issn><issn>2168-8184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdks1OGzEUhUdVKxVRdn0AS910QcBjj8dONyiKUogIAql0bZnrO4nRjJ3anra8Fk-I0yBou_GP7nePfY9OVX2s6YmUYnoKY8QxnTSCNvxNdcDqVk1UrZq3f53fV0cp3VNKayoZlfSgepxvTD6_uSXz4H-MGBPJGyTfzGgduULrwPRk5QB9cn5NFr_N8KWs2z7E3X3HzqC8bOCBhI7MYnadA1ealj5j37s1ekDi_IvYpQ-_erTr0pgSpjSgz8R4S5bDti9EdsEn0oVIroLF-Nq4sOO--qF615k-4dHzflh9_7q4nV9MVtfny_lsNQHOaJ7waSsFcsZpGZyBsGiYMlxxsMDYXdcqTjlTgMhAdmCogI5SKQ1a3kio-WF1ttfdjncD2uJBjqbX2-gGEx90ME7_W_Fuo9fhp66paFvBRVH4_KwQQzE3ZT24BMUW4zGMSTMlJVeqqWVBP_2H3ocx-jJfoVQjGJsKWqjjPQUxpBSxe_lNTfUuBXqfAv0nBfwJ4Hqp3A</recordid><startdate>20230911</startdate><enddate>20230911</enddate><creator>Aljindan, Fahad K</creator><creator>Al Qurashi, Abdullah A</creator><creator>Albalawi, Ibrahim Abdullah S</creator><creator>Alanazi, Abeer Mohammed M</creator><creator>Aljuhani, Hussam Abdulkhaliq M</creator><creator>Falah Almutairi, Faisal</creator><creator>Aldamigh, Omar A</creator><creator>Halawani, Ibrahim R</creator><creator>K. Zino Alarki, Subhi M</creator><general>Cureus Inc</general><general>Cureus</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230911</creationdate><title>ChatGPT Conquers the Saudi Medical Licensing Exam: Exploring the Accuracy of Artificial Intelligence in Medical Knowledge Assessment and Implications for Modern Medical Education</title><author>Aljindan, Fahad K ; Al Qurashi, Abdullah A ; Albalawi, Ibrahim Abdullah S ; Alanazi, Abeer Mohammed M ; Aljuhani, Hussam Abdulkhaliq M ; Falah Almutairi, Faisal ; Aldamigh, Omar A ; Halawani, Ibrahim R ; K. Zino Alarki, Subhi M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-39675e32301842c5dea28a383cdc22bf6830328cee2c7fca05cf0077aed347c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Business metrics</topic><topic>Chatbots</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Gynecology</topic><topic>Healthcare Technology</topic><topic>Licenses</topic><topic>Medical Education</topic><topic>Medicine</topic><topic>Obstetrics</topic><topic>Pediatrics</topic><topic>Performance evaluation</topic><topic>Quality Improvement</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aljindan, Fahad K</creatorcontrib><creatorcontrib>Al Qurashi, Abdullah A</creatorcontrib><creatorcontrib>Albalawi, Ibrahim Abdullah S</creatorcontrib><creatorcontrib>Alanazi, Abeer Mohammed M</creatorcontrib><creatorcontrib>Aljuhani, Hussam Abdulkhaliq M</creatorcontrib><creatorcontrib>Falah Almutairi, Faisal</creatorcontrib><creatorcontrib>Aldamigh, Omar A</creatorcontrib><creatorcontrib>Halawani, Ibrahim R</creatorcontrib><creatorcontrib>K. Zino Alarki, Subhi M</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Curēus (Palo Alto, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aljindan, Fahad K</au><au>Al Qurashi, Abdullah A</au><au>Albalawi, Ibrahim Abdullah S</au><au>Alanazi, Abeer Mohammed M</au><au>Aljuhani, Hussam Abdulkhaliq M</au><au>Falah Almutairi, Faisal</au><au>Aldamigh, Omar A</au><au>Halawani, Ibrahim R</au><au>K. Zino Alarki, Subhi M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ChatGPT Conquers the Saudi Medical Licensing Exam: Exploring the Accuracy of Artificial Intelligence in Medical Knowledge Assessment and Implications for Modern Medical Education</atitle><jtitle>Curēus (Palo Alto, CA)</jtitle><date>2023-09-11</date><risdate>2023</risdate><volume>15</volume><issue>9</issue><spage>e45043</spage><epage>e45043</epage><pages>e45043-e45043</pages><issn>2168-8184</issn><eissn>2168-8184</eissn><abstract>BackgroundThe application of artificial intelligence (AI) in education is undergoing rapid advancements, with models such as ChatGPT-4 showing potential in medical education. This study aims to evaluate the proficiency of ChatGPT-4 in answering Saudi Medical Licensing Exam (SMLE) questions.MethodologyA dataset of 220 questions across four medical disciplines was used. The model was trained using a specific code to answer the questions accurately, and its performance was assessed using key performance indicators, difficulty level, and exam sections.ResultsChatGPT-4 demonstrated an overall accuracy of 88.6%. It showed high proficiency with Easy and Average questions, but accuracy decreased for Hard questions. Performance was consistent across all disciplines, indicating a broad knowledge base. However, an error analysis revealed areas for further refinement, particularly with category (Option) A questions across all sections.ConclusionsThis study underscores the potential of ChatGPT-4 as an AI-assisted tool in medical education, demonstrating high proficiency in answering SMLE questions. Future research is recommended to expand the scope of training and evaluation as well as to enhance the model’s performance on complex clinical questions.</abstract><cop>Palo Alto</cop><pub>Cureus Inc</pub><doi>10.7759/cureus.45043</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-8184
ispartof Curēus (Palo Alto, CA), 2023-09, Vol.15 (9), p.e45043-e45043
issn 2168-8184
2168-8184
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10566535
source PubMed Central Open Access; PubMed Central
subjects Accuracy
Artificial intelligence
Business metrics
Chatbots
Data collection
Datasets
Gynecology
Healthcare Technology
Licenses
Medical Education
Medicine
Obstetrics
Pediatrics
Performance evaluation
Quality Improvement
Surgery
title ChatGPT Conquers the Saudi Medical Licensing Exam: Exploring the Accuracy of Artificial Intelligence in Medical Knowledge Assessment and Implications for Modern Medical Education
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ChatGPT%20Conquers%20the%20Saudi%20Medical%20Licensing%20Exam:%20Exploring%20the%20Accuracy%20of%20Artificial%20Intelligence%20in%20Medical%20Knowledge%20Assessment%20and%20Implications%20for%20Modern%20Medical%20Education&rft.jtitle=Cur%C4%93us%20(Palo%20Alto,%20CA)&rft.au=Aljindan,%20Fahad%20K&rft.date=2023-09-11&rft.volume=15&rft.issue=9&rft.spage=e45043&rft.epage=e45043&rft.pages=e45043-e45043&rft.issn=2168-8184&rft.eissn=2168-8184&rft_id=info:doi/10.7759/cureus.45043&rft_dat=%3Cproquest_pubme%3E2877388417%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884522950&rft_id=info:pmid/&rfr_iscdi=true